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a b s t r a c t

Offshore oil and gas installations are mostly powered by simple cycle gas turbines. To increase the ef-
ficiency, a steam bottoming cycle could be added to the gas turbine. One of the keys to the imple-
mentation of combined cycles on offshore oil and gas installations is for the steam cycle to have a low
weight-to-power ratio. In this work, a detailed combined cycle model and numerical optimization
tools were used to develop designs with minimum weight-to-power ratio. Within the work, single-
objective optimization was first used to determine the solution with minimum weight-to-power ratio,
then multi-objective optimization was applied to identify the Pareto frontier of solutions with maximum
power and minimum weight. The optimized solution had process variables leading to a lower weight of
the heat recovery steam generator while allowing for a larger steam turbine and condenser to achieve a
higher steam cycle power output than the reference cycle. For the multi-objective optimization, the
designs on the Pareto front with a weight-to-power ratio lower than in the reference cycle showed a high
heat recovery steam generator gas-side pressure drop and a low condenser pressure.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Today's offshore oil and gas installations are mostly powered by
simple cycle GTs (gas turbines). To counter the cost of CO2 emis-
sions in Norway (taxes and quota), an alternative to a simple cycle
configuration could be a combined cycle plant to increase the
plant's efficiency and decrease the CO2 emitted per generated kWh.
A steam bottoming cycle, as part of a combined cycle, needs to be
simple, with low weight and volume, on an offshore oil and gas
installation [1]. On a small scale, a few offshore installations have
combined cycles installed [2]. A 2013 increase in the CO2 tax by the
Norwegian parliament may make combined cycles more attractive
for the future on the Norwegian continental shelf [3].

One of the keys to the implementation of combined cycles on
offshore oil and gas installations is for the steam bottoming cycle to
have a low weight-to-power ratio. For the remainder of this paper,
the steam bottoming cycle will be referred to as the HRSC (heat
recovery steam cycle). The HRSC consists of a HRSG (heat recovery
steam generator), a steam turbine, a condenser, various pumps, a

water treatment unit, and associated auxiliaries. While the design
criteria for maximizing the HRSC power and efficiency are well-
known [e.g., see Ref. [4]], those for minimizing the weight-to-
power ratio are still unclear. Previous studies of off-shore HRSC
installations are based on knowledge-based designs relying on
previous experience, literature search, and experts' opinions as
exemplified in Ref. [5]. The knowledge-based design methodology
is described in Ref. [6].

Direct-search algorithms are widely used in engineering when
the objective function is a black-box, e.g., a sequential flowsheet
simulation code, or a solver of differential-algebraic equations.
Black-box optimizers do not make use of derivative information
(they are also called derivative-free methods) as the black-box
function may be non-differentiable, discontinuous, not defined in
some points of the feasible space, and affected by numerical noise.
Well-known examples of such methods are the Simplex method
[7], the Pattern Search Algorithm [8], the PSO (particle swarm
optimizer) [9], and the several GAs (genetic algorithms) developed
since the 1960s. A review and benchmarking of methods can be
found in Ref. [10] for unconstrained and bound-constrained prob-
lems, and in Ref. [11] for nonlinearly constrained problems. Thanks
to their robustness regarding numerical issues, such as numerical
noise and discontinuities in the objective function, black-box
methods have been successfully applied to several process
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engineering problems since the early 1970s, including steam cycles
[12] integrated HRSCs [13], and steam generators [14].

More recently, engineering problems with different possible
decision criteria (e.g., minimum weight or cost versus maximum
power or efficiency), in which it is not easy to identify a single
objective function, are often formulated and tackled as MO (multi-
objective) optimization problems by means of evolutionary algo-
rithms [15]. Instead, as for single-objective methods, such as the
above mentioned direct-search methods, which return a single
solution, evolutionary MO algorithms aim at determining the so-
called Pareto frontier, i.e., a set of the most interesting solutions.
Indeed, by definition of Pareto-optimality, no feasible solution gives
better objective function values than a Pareto-optimal solution for
at least one of the objective functions. For example, given two
objective functions, f1 and f2 (e.g., power andweight), if the solution
x is Pareto-optimal, no feasible solutions exist with the same value
of f1 and a better objective function value of f2 and vice versa.
Compared to the single solution returned by a single-objective
optimizer, knowing the Pareto frontier is very useful in practice
because: 1) it indicates not just one but a space of good solutions,
allowing the designer to select the solutionwhich best matches the
installation constraints; 2) it graphically plots the trade-off be-
tween the different objectives (e.g., the gain of power which could
be achieved by increasing theweight by a certain amount); and 3) it
is possible to derive general criteria by analyzing the features of the
Pareto-optimal solutions. As a consequence, MO algorithms have
been extensively applied to the design of HRSCs in dual-pressure
[16] and other combined cycles [17], Organic Rankine Cycles on
offshore platforms [18] and for lowgradewaste heat [19], and novel
energy systems [20].

The aims of this work were to find the minimum weight-to-
power ratio for a heat recovery steam cycle designed for offshore
oil and gas installations, and to determine the trade-off between
weight and power. These aims were to be achieved while utilizing a
commercial process simulator with detailed process models within
an optimization framework. In more detail, a process model of a
single pressure level combined cycle was coupled with MATLAB

[21] and used as a ‘black-box’ function by specific optimization
algorithms. The process model computed the combined cycle per-
formance and weight for fixed HRSC design variables, which were
set by the MATLAB optimizer. Within this framework, firstly PGS-
COM, the direct-search algorithm proposed by Martelli et al. in
Ref. [22] and described in detail in Ref. [11], was used to determine
the solution with minimum weight-to-power ratio; then NSGA-II,
the multi-objective optimizer described in Ref. [23], was applied
to identify the Pareto frontier of solutions with maximum power
and minimum weight.

2. Methodology

2.1. Process description

The layout for the combined cycle was based on one GT (GE
LM2500 þ G4), one single-pressure OTSG (once-through heat re-
covery steam generator), one ST (steam turbine), and a deaerating
condenser, as shown in Fig. 1. This setup is explained in more detail
in Ref. [5] (layout c). The GT was equipped with dry low emission
burners and VGVs (variable guide vanes). The use of VGVs for
marine combined cycles is further described in Ref. [24]. Process
model assumptions are listed in Table 1. The HRSG designed for an
offshore oil and gas installation including design parameter selec-
tion is discussed in Ref. [1]. Model validation of the knowledge-
based design, which was the starting point for the optimization,
was performed in Ref. [5]. For the gas turbine, the exhaust mass
flow rate was constant at 90 kg/s for all design cases, whereas the
turbine outlet temperature varied slightly (530e534 �C) due to
changes in HRSG pressure loss.

2.2. Model description

GT PRO (design), GT MASTER (off-design), and PEACE (pre-
liminary engineering and cost estimation) by Thermoflow Inc. were
the software used for the combined cycle process modeling, sim-
ulations, and weight estimations [25]. Within the Thermoflow

Nomenclature

child child solution vector
f objective function
LHV lower heating value (kJ/kg)
m mass (kg)
_m mass flow rate (kg/s)
Nf number of objective functions
Np population size
Nt number of solutions used by the binary tournament

selection operator
parent parent solution vector
p population vector
pcond condensing pressure (bar)
psteam live steam pressure (bar)
Q child population
q vector in the solution space
rand random number uniformly distributed between 0 and

1
ratio tuning parameter of the crossover operator
RLgt relative gas turbine load (�)
T temperature ( �C)
Tsteam live steam temperature ( �C)
W/P weight-to-power ratio (kg/kW)
x solution vector

_Waux auxiliary power (W)
_Wgt gas turbine gross power (W)
_Wnet;plant net plant power (W)
_Wsc steam cycle modified power (W)
_Wst steam turbine gross power (W)
Dp pressure drop (bar)
Dphrsg gas-side HRSG pressure drop (bar)
DTcw cooling water temperature difference (K)
DTpinch pinch-point temperature difference (K)
hnet,plant net plant efficiency (�)
s standard deviation
F parent population
CPSO constrained particle swarm optimizer
GA genetic algorithm
GSS generating set search
GT gas turbine
HRSC heat recovery steam cycle
HRSG heat recovery steam generator
MO multi-objective
NSGA-II non-dominated sorting genetic algorithm II
OTSG once-through heat recovery steam generator
PSO particle swarm optimizer
SC steam cycle
ST steam turbine
VGV variable guide vane
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