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a b s t r a c t

Autonomous Underwater Vehicles (AUVs) are effective platforms for science research and monitoring,
and for military and commercial data-gathering purposes. However, there is an inevitable risk of loss
during any mission. Quantifying the risk of loss is complex, due to the combination of vehicle reliability
and environmental factors, and cannot be determined through analytical means alone. An alternative
approach – formal expert judgment – is a time-consuming process; consequently a method is needed to
broaden the applicability of judgments beyond the narrow confines of an elicitation for a defined
environment. We propose and explore a solution founded on a Bayesian Belief Network (BBN), where the
results of the expert judgment elicitation are taken as the initial prior probability of loss due to failure.
The network topology captures the causal effects of the environment separately on the vehicle and on
the support platform, and combines these to produce an updated probability of loss due to failure. An
extended version of the Kaplan–Meier estimator is then used to update the mission risk profile with
travelled distance. Sensitivity analysis of the BBN is presented and a case study of Autosub3 AUV
deployment in the Amundsen Sea is discussed in detail.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous Underwater Vehicles (AUVs) have a future as
effective platforms for science research and monitoring, and for
military and commercial data-gathering purposes. Increasingly
they are being used in environments that are not benign [1,2].
Environments such as under sea ice [3], under shelf ice [4], or
along rocky coasts [5] intuitively give rise to a higher risk of loss
should the vehicle malfunction. The risk of loss is real; for exam-
ple, Australian and British AUVs have been lost under ice sheets [6]
and one team maintained a lightweight tether to an AUV when
operating under sea ice. The problem of predicting risk of loss is
not only one of predicting the reliability of the vehicle as a whole,
its sub-systems and its components, but also of how the operating
environment, together with reliability, sets the probability of los-
ing the vehicle. It is not obvious that an approach based on
separate statistical analyses of vehicle reliability and the affects of
the environment on probability of loss is either feasible or
meaningful. Such an approach, when reduced to summary statis-
tics such as mean time to failure, would ignore the interaction

between individual faults or incidents and the environment,
which we postulate to be at the centre of this problem.

One alternative would be to assess the probability of loss in var-
ious environments directly, by counting the frequency of occurrence.
This frequentist approach is certainly appropriate for assessing the
reliability of identical engineered systems, where probability of failure
is derived from a long-run frequency of occurrence, usually from the
study of many items in use. Such an approach is the foundation for
general reliability handbooks [7]. This is also the approach taken for
obtaining reliability statistics in the offshore industry, for example the
OREDA database [8], first published in 1984 [9]. However, this
methodology “does not give the designer or manufacturer any insight
into, or control over, the actual causes of failure since the cause-and-
effect relationships impacting reliability are not captured” [10]. It is
precisely that cause-and-effect between vehicle fault or incident and
the environment that we seek to establish.

In [11], the authors present a risk management process tailored to
AUV deployment in extreme environments. The method was used to
support the decision to deploy the Autosub 3 AUV underneath an ice
shelf, the Pine Island Glacier, Amundsen Sea, Antarctica in 2009 and
again in 2013 [12]. Expert judgment was sought to quantify the like-
lihood of loss given a fault, and the experts' supporting text provided
insights into possible causes and effects. The expert judgments were
aggregated using mathematical analytical methods
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In contrast to the simple, yet high risk, case of AUV operation under
an ice shelf, operations in other environments pose more complex risk
scenarios, examples include under sea ice and coastal operations.
Furthermore, the risk is often modified by the characteristics of the
support platform. There is a set of AUV mission circumstances,
therefore, where the range of factors is sufficiently large that it would
be impracticable to ask an expert panel to review and assess every
possibility. A method is needed to estimate risk under different con-
ditions that minimizes the call on external experts, yet is well founded
on their judgments.

We propose a three-stage approach to predicting risk of loss of an
AUV during a mission in an environment that is different from that
agreed as the nominal conditions. The first stage uses the formal
process of eliciting expert judgment to quantify the likelihood of each
failure leading to loss under a set of nominal conditions [13–15].

The second stage generalizes the experts’ judgments to a new
operating environment. For this stage a solution founded on a
Bayesian Belief Network (BBN) approach [16] is proposed as it is an
accepted method for modelling complex probability problems
where it is possible to establish a causal relationship between
domain variables [17,18]. The design of the network topology
captures the causal effects of the environment separately on the
vehicle and on the support platform (e.g. a ship), and combines
these to produce the output. For our example environment of
under sea ice, we use the ASPeCt sea ice characterization protocol
[19] and probability distributions of ice thickness and concentra-
tion within a rigorous process to quantify risk given a range of sea
ice conditions and with ships of differing ice capabilities. Com-
plementary expert knowledge is included within the conditional
probability tables of the BBN. In [20] we showed how a BBN model
can be combined with Monte-Carlo simulation to generate risk
‘envelopes’ for the AUV operation. The role of the BBN here was to
update cumulative risk distributions for a given operational
environment. This cumulative distribution would then be inte-
grated in a Monte-Carlo framework to randomly generate Kaplan–
Meier survival plots of the AUV survivability with distance. This
approach ignored the criticality of specific faults. A fault that was
once considered of high criticality could later be deemed of low
criticality and vice-versa. The approach presented in this paper is a
significant improvement on previous work because instead of
using the BBN for updating the cumulative risk profile for a given
environment and operational constraints we show how the BBN
can be used for updating the likelihood of loss for a failure for a
given environment and operational conditions. This required fine-
tuning of the conditional probability tables.

In the third stage, the extended Kaplan–Meier estimator is used
for updating the risk profile in light of the revised probability of
loss given failure.

2. Autonomous Underwater Vehicle risk modelling and ana-
lysis for extreme environment missions

Our Autonomous Underwater Vehicle risk model is based on
the vehicle’s intrinsic failure history and expert judgments on the
impacts of failure in the target operating environment. As sub-
jective probability is a belief assessment on the likelihood of a
hypothesis being true, this will differ between individuals when
the uncertainty is epistemic, that is, due to imperfect knowledge.
There remains controversy among statisticians over the validity of
subjective probability, between the frequentists and the adherents
of Bayes’ theorem [13]. However, O’Hagan and colleagues argue
that “this controversy does not arise” for the practical elicitation of
subjective probability [13]. Hence, in this work a formal process of
eliciting expert judgment was followed [21].

2.1. Nominal risk models for open waters, coastal waters, sea ice and
ice shelf

Several formal expert judgment elicitation methods have been
developed over the years [14]. For this work, we draw upon the
formal expert judgment elicitation that was conducted in order to
build the risk model for Autosub 3 deployment underneath the
Pine Island Glacier. The static risk model was based on expert
judgment on the criticality of each failure in the failure history
[21,22]. The subsequent analysis sought to identify biases arising
from various causes [21,23]. When making probability assess-
ments, people tend to follow a number of mental shortcuts,
denoted as heuristics, these may be based on how quickly the
occurrence of an identical event comes to mind, or the impact of
the event or how one anchors his or her assessment to a known
event. Representativeness, availability and anchoring are the most
common type of heuristics. Research has shown that people can
introduce biases when following heuristics [23,24].

Reference cases for risk of loss in different environments were
obtained from an earlier study in which ten independent experts
were asked to consider the simple question, “What is the prob-
ability of loss of the Autosub3 AUV in the given environment X
given the fault/incident Y?” [14]. X comprised four example
environments: open water, coastal, under sea ice, under ice shelf
and Y comprised the set of 63 faults/incidents recorded on 29
missions to April 2007; 10 missions had no faults or incidents. The
experts, from the USA, Canada and Australia, had a wide range of
backgrounds, encompassing academic research (two graduate
students and two full professors, both with polar experience,
working on AUVs), research laboratories (three experts, two with
polar experience), military research and development (two
experts), and industry (one expert, with polar experience).

The full results are contained in a detailed 198-page report,
available online [15], which contains nearly 2000 individual
judgments, together with the expert's own assessment of their
confidence in making each judgement. The authors augment the
experts' reasons for their judgments with a commentary on points
of agreement and disagreement, and conclude that where there
were bimodal distributions, the experts seem to have fallen into
two camps—optimists and pessimists. While noting these differ-
ences of opinion, the overall aggregated outcome was formed
using a linear opinion pool for each fault or incident [21]. The final
results were visualized as relative frequency distributions for the
assigned probabilities for each environment (Fig. 1).

In reaching their judgments on the risk when operating in these
four environments the experts were provided with brief descriptions
of the characteristics of each environment that affect risk of loss.
However, each expert also drew on their own knowledge of the
operating environments, and in the supporting comments to their
judgements gave reasons for reaching their probability of loss esti-
mate for each fault. Rather than mathematically aggregating these
judgements into a single probability of loss in each environment,
which would over-simplify the assessment, and give a false sense of
confidence, Fig. 1 shows the probability frequency distribution for
each environment from the judgements of the experts.

For sea ice, the experts were asked to keep in mind an area of
first year ice (0.3–2.0 m thick), 50% ice concentration, with ice
keels to 15 m, sporadic icebergs and a ship capable of breaking 2 m
ice at 2 kt. These parameters form the particular reference case –

the prior information for the Bayesian approach – for the moti-
vating example in this study. To help extend the risk modelling to
other ice conditions, the experts’ judgments on risk in open water
and under ice shelf are important. In the Bayesian sense they
provide new information as they bound the risks under the two
extremes of sea ice conditions. Where there is a high fraction of
open water between the sea ice, the risk should tend to that of
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