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a b s t r a c t

This paper presents nonparametric predictive inference for system reliability following common-cause
failures of components. It is assumed that a single failure event may lead to simultaneous failure of
multiple components. Data consist of frequencies of such events involving particular numbers of
components. These data are used to predict the number of components that will fail at the next failure
event. The effect of failure of one or more components on the system reliability is taken into account
through the system's survival signature. The predictive performance of the approach, in which
uncertainty is quantified using lower and upper probabilities, is analysed with the use of ROC curves.
While this approach is presented for a basic scenario of a system consisting of only a single type of
components and without consideration of failure behaviour over time, it provides many opportunities
for more general modelling and inference, these are briefly discussed together with the related research
challenges.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A major consideration for reliability of systems is the possible
occurrence of common-cause failures, where multiple compo-
nents fail simultaneously due to the same underlying cause. This
paper considers the reliability of a system following a future
failure event, with possible common-cause failures of multiple
components. In particular, the aim is to develop predictive
inference for the reliability of a system with multiple components
based on previous failure event data for this system, or for other
systems that are fully exchangeable with this system. These data
are assumed to consist of the numbers of failing components in
past failure events, in each of which at least one component failed.
These failure events did not necessarily involve failure of the
whole system, but each event involves failure of one or more
components. Aspects of ageing are not taken into account, nor any
other aspects that are explicitly related to time, usage or other
processes. Such aspects are likely to be important in some
practical applications, developing methodology to deal with these
provides interesting research challenges.

Common-cause failures are important in many applications, as
systems with built in redundancy are at increased risk if multiple

components may fail simultaneously. Basic concepts of modelling
common-cause failures are reviewed by Rasmuson and Kelly [1]
and by Mosleh et al. [2]. The alpha-factor model, proposed by
Mosleh et al. [3] is commonly used, and enables straightforward
analysis in the framework of Bayesian statistics due to the
availability of conjugate prior distributions [4]. A robust Bayesian
approach to this model has recently been proposed by Troffaes
et al. [5], using a set of conjugate priors instead of a single prior
distribution, following a standard approach for generalized Baye-
sian methods in theory of imprecise probabilities [6]. In this paper
an alternative statistical method within the theory of imprecise
probability is used, namely nonparametric predictive inference
(NPI) [7]. For the problem considered here, it makes little differ-
ence which specific method for statistical inference is used to
predict the number of components failing simultaneously at the
next common-cause failure event. Due to its explicitly predictive
nature it is attractive to use the NPI approach. The main contribu-
tion of the paper is the link from inference on this number of
failing components to lower and upper probabilities for the event
that the system will still function after the next common-cause
failure event. This link is quite straightforward, as shown in this
paper, with the use of the system survival signature [8], a recently
introduced concept which is closely related to the popular system
signature [9] but, in contrast to the latter, is also conceptually
straightforward for systems with multiple types of components.
The question of the system's reliability following a common-cause
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failure event is of practical interest, as following such an event one
may have more time to consider appropriate maintenance or
replacement actions if the system is still functioning than in case
the system has failed. Such further actions are not addressed in
this paper, but combined with aspects of failure processes they
provide interesting topics for future research.

As mentioned, the main contribution of this paper is to model
the link between failure of components and failure of the system,
or indeed functioning of the system, for the common-cause failure
scenario, through the recently introduced concept of survival
signatures [8]. For a system with m components, the state vector
x ¼ ðx1; x2;…; xmÞAf0;1gm is defined such that xi¼1 if the ith
component functions and xi¼0 if not, using an arbitrary but fixed
labelling of the components. The structure function ϕ : f0;1gm-
f0;1g, defined for all possible x, takes the value 1 if the system
functions and 0 if the system does not function for the state vector
x. The structure function can be generalized by defining it as the
probability that the system functions for the state vector x, which
might be relevant if one is not certain about its functioning [10],
this is not used in this paper but provides interesting challenges
for research and opportunities for applications.

In this paper, attention is restricted to coherent systems, which
means that ϕðxÞ is not decreasing in any of the components of x, so
system functioning can never be improved by worse performance
of one or more of its components. It is further assumed that
ϕð0Þ ¼ 0 and ϕð1Þ ¼ 1, so the system fails if all its components fail
and it functions if all its components function. These assumptions
could easily be relaxed but they simplify presentation in this paper
and are reasonable for most systems of practical interest. More
importantly, attention is restricted in this paper to systems
consisting of exchangeable components, which could be called
components of a single type. Most practical systems, in particular
also networks, consist of components of multiple types. This
restriction is merely for sake of simplicity of presentation, the
method introduced here can quite straightforwardly be general-
ized to systems with multiple types of components.

The survival signature for a system with m exchangeable
components, denoted by ΦðlÞ, for l¼1,…,m, is the probability that
the system functions given that precisely l of its components
function [8]. For coherent systems,ΦðlÞ is an increasing function of
l, and the second assumption above leads to Φð0Þ ¼ 0 and
ΦðmÞ ¼ 1. There are ðm

l
Þ state vectors x with precisely l components

xi¼1, so with ∑m
i ¼ 1xi ¼ l; let Sl denote the set of these state

vectors. Due to the exchangeability assumption for the m compo-
nents, or more precisely the assumed exchangeability of the
random quantities representing functioning of the m components,
all these state vectors are equally likely to occur, hence

ΦðlÞ ¼ m

l

� ��1

∑
xA Sl

ϕðxÞ ð1Þ

Coolen and Coolen-Maturi [8] called ΦðlÞ the survival signature
because, by its definition, it is closely related to survival of the
system, and it is close in nature to the system signature [9]. The
survival signature can straightforwardly be generalized to systems
with multiple types of components, in contrast to the system
signatures for which this is practically impossible [8].

This paper is organised as follows. Section 2 presents the use of
nonparametric predictive inference to predict the number of
failing components at a future common-cause failure event.
In Section 3 these inferences are combined with the survival
signature to lead to lower and upper probabilities for the event
that the system will still function after the next failure event. As
with any newly proposed procedure, it is important to evaluate
the performance of the presented method, this is non-trivial for
methods using lower and upper probabilities. In Section 4 a novel

way to evaluate the performance of such an imprecise probability
method is introduced, which is fully in line with the predictive
nature of the inferences and makes use of ROC curves. Section 5
concludes the paper with a discussion of the method and related
research challenges.

2. Predicting the number of failing components

For a system with m exchangeable components, which are
assumed throughout this paper to all function before the failure
event of interest, a common-cause failure event can lead to
simultaneous failure of any number f Af1;…;mg of components.
The alpha-factor model [2,3] introduces parameters αj, for j¼1,…,
m, representing the probability that precisely j of the m compo-
nents in the system fail simultaneously, given that a failure event
occurs, hence ∑m

j ¼ 1αj ¼ 1. It is possible to select values αj based on
background knowledge of the system, but in this paper we aim at
learning about these probabilities from available failure data while
attempting to add only rather minimal further assumptions.
Recently, two Bayesian solutions to the same problem have been
presented, one using a non-informative Dirichlet prior distribution [4]
and the other using the imprecise Dirichlet model (IDM) [5]. Both of
these let the numbers 1 to m of possible simultaneous failures be
represented by m categories, with an assumed multinomial distribu-
tion for the numbers of observations in these categories. This is a
standard statistical approach, with the IDM the most widely applied
imprecise probability model in statistics [6,11] with also interesting
applications in reliability, see for example [12,13]. There are, however,
two issues with this model. Even while the (set of) prior distribution
(s) is chosen in order to have little influence on the inferences, they do
affect these noticeably in case interest is in categories which have
rarely or even never been observed. Furthermore, any ordering of the
categories is not taken into account. The latter aspect is particularly
relevant if one is interested in events involving unions of categories,
for example that the number of simultaneously failing components is
at least two.

This paper presents a nonparametric predictive inference (NPI)
alternative to the combination of the alpha-factor model with
(imprecise) Dirichlet prior(s), also using lower and upper prob-
abilities to quantify uncertainty. NPI for multinomial data has been
presented as an alternative to the IDM [14], while NPI for real-
valued data, including right-censored observations, has also been
applied successfully [15,16]. However, in this paper attention is
restricted to NPI for ordinal data [17] as this explicitly takes the
natural ordering of the m categories, namely the numbers 1;…;m,
into account. Assume that data are available on n previous
common-cause failure events, which are assumed to be exchange-
able with the next event, implying that they also all involved m
components, and all components, in the observed systems and for
the prediction, are exchangeable. Let njZ0 denote the number of
the observed common-cause events in which precisely j compo-
nents failed simultaneously, so ∑m

j ¼ 1nj ¼ n. It is important to
emphasize that no information or assumption is used about which
specific components failed, just the numbers of components fail-
ing at the failure events are of interest for the inferences con-
sidered in this paper.

It is important to comment briefly on the assumption of
exchangeability of all components, both in the observed systems
and for prediction. For simplicity, one can consider this assump-
tion as being in line with assuming all components have the same
(unknown) probability of failure in case of a common-cause failure
event. Hence, one could not, for example, apply the method
presented in this paper in a scenario where components that have
been in a system for a longer time undergo some wear, in the
sense of their probability of failure increasing. If one would deem
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