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a b s t r a c t

An analytical optimization method for preventive maintenance (PM) policy with minimal repair at
failure, periodic maintenance, and replacement is proposed for systems with historical failure time data
influenced by a current PM policy. The method includes a new imperfect PM model based on Weibull
distribution and incorporates the current maintenance interval T0 and the optimal maintenance interval
T to be found. The Weibull parameters are analytically estimated using maximum likelihood estimation.
Based on this model, the optimal number of PM and the optimal maintenance interval for minimizing
the expected cost over an infinite time horizon are also analytically determined. A number of examples
are presented involving different failure time data and current maintenance intervals to analyze how the
proposed analytical optimization method for periodic PM policy performances in response to changes in
the distribution of the failure data and the current maintenance interval.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Maintenance involves preventive and corrective actions carried
out to keep physical systems in the desired operating condition or
to restore them to this condition. Optimal maintenance policies
aim to provide optimal system reliability/availability and safety
performance at lowest possible maintenance costs. The literature
on maintenance is vast. For a full overview on the state-of-the-art,
the readers are referred to see [1–6].

Maintenance can be categorized into three groups: (1) corrective
maintenance (CM), (2) preventive maintenance (PM) and (3) pre-
dictive maintenance (PdM). CM are actions performed when the
system fails. The most common form of CM is “minimal repair”,
where the state of the system after repair is nearly the same as that
just before failure (see [7,8]). PM is a maintenance policy based on
replacing, overhauling or remanufacturing a system at fixed or
adaptive time intervals, regardless of its condition at the time. The
periodic PM policy can be considered as the most common
maintenance policy in which a system is preventively maintained
at fixed time intervals, regardless of the failure history of the
system; [9–12]. PdM is an advanced preventive approach where
maintenance is deferred until it is actually needed. The objective of

this approach is to monitor the system in order to detect incipient
faults before they can cause a part to fail [13]. This maintenance
strategy has been implemented as condition based maintenance in
systems where certain performance indices are periodically or
continuously monitored [14–16].

PM policy has been considered by many researchers as one of
the most studied maintenance policies (see [17–20]). For most
industrial plants, PM is still a dominant maintenance policy as it is
easy to implement and not many systems can be condition-
monitored [21]. A more comprehensive definition is: PM policy
is a planned maintenance that reduces or eliminates accumulated
system deterioration, and is executed according with planned
schedules. In the reliability and maintenance literature, PM poli-
cies are commonly classified as [22]: periodic and sequential PM.

Periodic PM is executed at integer multiples of some fixed time
interval. On the other hand, sequential PM is implemented at
intervals of unequal time lengths. Sequential PM is more suitable
when the system requires more frequent maintenance as it ages,
whereas periodic PM is more convenient to schedule. This paper
addresses the problem of optimal periodic PM policy for systems
with minimal repairs at failures between PM actions and
replacements.

In the periodic PM policy, a system receives PM at fixed time
intervals kT (k¼1, 2, …, N), where T is the time interval between
PM actions, and is replaced at the Nth PM action. It is assumed that
the system receives only minimal repairs at failures occurring
between PM actions, and hence, the system failure rate remains
unchanged [23].
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The aim of periodic PM optimization is to determine the
optimal maintenance interval Tn and the optimal number of
maintenance actions Nn, such that the total mean cost of repairs,
PM, and replacement activities is minimal. Let us consider one
cycle between two adjacent replacements with a constant time NT.
From the renewal theorem [24], the expected cost per unit of time
for an infinite time span is

CðN; TÞ ¼ lim
t-1

Ĉ ðtÞ
t

¼ Expected cost in one cycle
Mean time of one cycle

: ð1Þ

Therefore, the expected cost per unit of time for the periodic PM
policy is given by [23]

CðN; TÞ ¼ 1
NT

ðN�1ÞCPMþCRþCMR ∑
N

k ¼ 1

Z T

0
ρkðtÞ dt

 !
ð2Þ

where CPM is the cost of PM actions, CMR is the cost of minimal
repair, CR is the cost of replacement, where CRZCPM, and ρkðtÞ is
the hazard rate function that describes the impact of a kth PM
action at time t. The optimal Tn and Nn have been estimated
traditionally by numerical techniques, since no analytical method
has been proposed in the literature [22,25–27].

In general, the impact of PM actions can be classified into one
of the following situations [25]: perfect, minimal, and imperfect. A
perfect PM restores the system to the state “as good as new”. A
minimal PM restores the system to the state that it was just before
the maintenance action, or “as bad as old”. An imperfect PM takes
the system to any state between “as good as new” and “as bad as
old”. In practice, PM is usually imperfect.

Imperfect PM has grown recently as a popular issue to
researchers as well as industrial applications (see for example
[26,28–31]). In order to model the impact of imperfect PM, the
hazard rate function of the system under maintenance is generally
used. In fact, the hazard rate usually is more informative about the
underlying mechanism of failure than the other representatives of
a lifetime distribution. For this reason, consideration of the hazard
rate may be the dominant method for modeling imperfect PM.

Most of the hazard rate used in imperfect PM models are based
on univariate analysis, where the single random variable under
analysis is the failure time [32]. Recently, several attempts have
been made to extend the concept of the univariate hazard rate to
the multivariate analysis in order to include variables that influ-
ence the failure time of the system under study, for example
cumulative load applied, time varying stress, and environmental
factors [33,31]. However, the hazard rate concept is somewhat
difficult to extend to the multivariate situation and frequently the
observed lifetime data set is not big enough in relation to the
dimension of the hazard rate model in order to find good
estimates of the model and its parameters. Therefore, this paper
is devoted to imperfect PM models based on univariate analysis
with the failure time as the random variable under study.

A number of PM models have been developed in order to
describe the impact of imperfect PM on the hazard rate of
repairable systems. These PM models can be classified into three
groups [25]: age reduction models, hazard rate models, and
hybrids of both. Age reduction models assume that there is an
effective age reduction right after a PM action, and that the hazard
rate continues to be a function of the effective age [34–36]. In
other words, if Ti and ρiðtÞ represent the PM interval and the
hazard rate function of the system prior to the ith PM action,
respectively, then the hazard rate function after the ith PM action
becomes ρiðtþaiTiÞ for tAf0; Tiþ1 g, where 0oaio1 is the age
reduction factor.

The hazard rate models assume that right after a PM action, the
hazard rate reduces to zero, and then increases faster than it did in
the previous PM interval [37,35,36,38]. Thus, the hazard rate

function becomes biρiðtÞ for tAf0; Tiþ1 g after the ith PM action,
where bi41 is the hazard rate increase factor. In the hybrid
models, the hazard rate becomes biρiðtþaiTiÞ after the ith PM
action [39,40].

The above models have made important contributions to this
research field, however, in practice the main problem is how to take
decisions or make inferences about these unknown age reduction
and hazard rate increase factors. Numerous approaches have been
proposed based on guessing the values of these factors by subjective
means, which is fine, as long as there is enough expert knowledge to
perform this task properly. Other approaches are based on estimating
these factors from observed data. These statistical inference techni-
ques are very good if there are sufficient data to estimate the factors
accurately. However, in practice, few data are available in many areas
of maintenance and replacement [21].

In addition to the aforementioned issue, generally a PM model
requires to estimate the parameters of the lifetime distribution
used to determine the hazard rate function on which the model is
based. The two-parameter Weibull distribution is one of the most
popular distributions for modeling stochastic deterioration of
systems because it is very flexible, and can model many types of
failure rate behaviors through an appropriate choice of para-
meters. The estimation of these parameters has been addressed
in the literature by various techniques, such as probability plotting,
moment estimation, modified moment estimation and maximum
likelihood estimation (MLE). In the case of MLEs, the correspond-
ing likelihood equations need to be solved numerically and related
software programs need to be applied [41]. Moreover, since the
solution is numerical, issues of existence and uniqueness of the
estimates have to be addressed, which gets quite involved in the
case of scarce data [42].

In this paper, an analytical method for optimizing the periodic
PM policy is proposed. This method includes a new hazard rate
function based on the two-parameter Weibull distribution in order
to assess the impact of imperfect PM actions on the reliability of
repairable systems. The proposed hazard rate function does not
require adjustment factors as the ones presented in the literature
since it is formulated as a function of the both, the current
maintenance interval T0 and the optimal maintenance interval Tn

to be estimated. The maintenance interval T0 refers to the PM
policy that is currently influencing the system failure times
behavior. Also, this paper proposes an analytical method to
estimate the Weibull shape β and scale α parameters that define
the hazard rate function. By using the MLE method, a closed-form
expression is obtained for the β parameter. The closed-form
expression for the α parameter is a function of the β parameter,
and it is obtained directly from the partial derivative of the log-
likelihood function. Finally, with the proposed hazard rate func-
tion, the optimal number of PM actions Nn and the optimal PM
interval Tn, both of which minimize the expected total cost
function (2), are also analytically estimated.

The paper is organized as follows: the new proposed hazard
rate function is described in Section 2. In Section 3 the develop-
ment of an analytical method to estimate the two Weibull
parameters α and β is presented. An analytical approach to
estimate the optimal periodic PM policy is proposed in Section 4.
In Section 5 some examples of application of the proposed PM
optimization method are presented. Finally, some concluding
remarks are given in Section 6.

2. The hazard rate function

Let us consider that a system undergoes imperfect periodic PM
at fixed time intervals kT, and the time of the kth PM action is
tk ¼ kT , k¼ f1;Ng. At the time tN, the PM action is the replacement
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