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a b s t r a c t

One of the main causes of accidents in safety-critical systems is human error. In order to reduce human
errors in the process of handling abnormal situations that are highly complex and mentally taxing
activities, operators need to be supported, from a cognitive perspective, in order to reduce their
workload, stress, and the consequent error rate. Of the various cognitive activities, a correct under-
standing of the situation, i.e. situation awareness (SA), is a crucial factor in improving performance and
reducing errors. Despite the importance of SA in decision-making in time- and safety-critical situations,
the difficulty of SA modeling and assessment means that very few methods have as yet been developed.
This study confronts this challenge, and develops an innovative abnormal situation modeling (ASM)
method that exploits the capabilities of risk indicators, Bayesian networks and fuzzy logic systems. The
risk indicators are used to identify abnormal situations, Bayesian networks are utilized to model them
and a fuzzy logic system is developed to assess them. The ASM method can be used in the development
of situation assessment decision support systems that underlie the achievement of SA. The performance
of the ASM method is tested through a real case study at a chemical plant.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Today, in many safety-critical systems the role of operators has
shifted from manual controllers to supervisors or decision-makers
who are responsible for extensive cognitive tasks [1]. Operators
are often moved to a control room far away from the physical
process and have to rely on human computer interaction (HCI)
principles to observe and comprehend the overwhelming amount
of rapidly changing data for processing. In the presence of all this
data, complex interfaces, and dynamic situations, human error
could be a serious cause of accidents in these environments. It has
been found that in most industries, 70–90 percent of accidents are
attributed to human error [2]. Traditionally, there are two
approaches to prevent human error during operation of safety-
critical systems. The first approach aims for the provision of better
training programs for operators, and the second aims to improve
operator support systems [3]. However, it has been shown that in
abnormal time pressure situations, ordinary training does not
improve the quality of decision making [4], and therefore, the

role of cognitive support systems to assist operators in such
situations is highlighted [5].

In abnormal situations, a well-trained operator should com-
prehend a malfunction in real time by analyzing alarms, assessing
values, and recognizing unusual trends indicated by multiple
instruments. In such a situation, many alarms from different
systems are frequently triggered at the same time, making it
difficult for the operator to make a decision within a very short
time frame. If several abnormal situations occur at once, decisions
have to be made in even less time. Operators are usually unable to
judge what situation should be given priority when confronted
with complex abnormal situations such as these [6,7]. To return
operational units to normal conditions, operators must respond
quickly and make rapid decisions, but under these circumstances,
the mental workload of operators rises sharply, and a mental
workload that is too high may increase the rate of error.

Despite the importance of human factors, most of the operator
support systems focus on the deviation of the process from an
acceptable range of operation, the identification of operation faults
[8] or the prediction of process variables [9] that will violate an
emergency limit in the future. Therefore, quantitative knowledge
and hardware failures have been relied on significantly; however,
when faults occur, human operators have to rely on their experi-
ence under working pressure to understand what is going on and
to contribute a solution [10]. These problems highlight the urgency
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of cognitive human factors in the development of operator support
systems to lower workload, stress and consequent error rates of
operators. Of the various cognitive features, operators’ situation
awareness (SA) is considered to be the most important prerequi-
site for decision-making [11,12]. To date, several SA models have
been developed; however, Endsley’s three-level model has
undoubtedly received the most attention. This model describes
SA as “the perception of the elements in the environment within a
volume of time and space, the comprehension of their meaning
and the projection of their status in the near future” [11]. The
three-level model describes SA as an internally held product,
comprising three hierarchical levels (i.e. perception, comprehen-
sion, and projection), that is separate from the processes called
situation assessment, used to achieve it [11]. Usually, assessing a
situation requires data integration with the support of computer-
based intelligent techniques. Because SA aims to predict the status
of a situation in the near future, which is the third level of the
three-level model, proper and effective situation assessment
approaches and tools to conduct the prediction are required.

Many studies have reported that machine learning techniques
could be effectively used for intelligent prediction by extracting
rules from previous data to generate new assessment results [13].
Despite the usefulness of machine learning techniques for situa-
tion assessment, their use in real environments, especially in
abnormal situations, are very limited because of the lack of
appropriate training data [14]. Therefore, a number of quantitative
situation assessment models based on probabilistic modeling
techniques, such as Miao et al. [15] and Kim and Seong [16], have
been proposed. In the former, Miao et al. proposed a computa-
tional model of situation assessment using belief networks. Their
model consists of developing a structure to represent the SA
mental model, and developing a belief update algorithm to reflect
SA event propagation and projection [15]. In the latter, Kim and
Seong developed a situation assessment model based on Bayesian
networks (BNs) for operators of nuclear power plants (NPPs). In
their proposed model, the knowledge of operators, i.e. mental
models, is elicited for assignation to the CPTs of the network, and
when operators receive information from indicators, the probabil-
ities of the states of the environment, i.e. several accidents, are
updated [16]. They assume that the occurrences of situations are
mutually exclusive, and they therefore provided very finite states,
including four accidents for the environment, to avoid a large BN
in which the need for essential data increases exponentially, or
proportionally.

This paper develops a new abnormal situation modeling (ASM)
method that exploits specific capabilities of BNs, risk indicators
and fuzzy logic systems to determine abnormal situations, model
them in a situational network, and assess them dynamically. The
paper defines the situation as a set of circumstance in which a
number of objects may have relationships with one another and
the environment, and a hazardous situation as a possible circum-
stance immediately before harm is produced by a hazard. There-
fore, an abnormal situation is defined as a hazardous situation if its
risk is not acceptable. Conventional BN is considered as a repre-
sentation of static cause–effect relationships between objects in a
situation, and it is assumed that operators use Bayesian inference
to process incoming information. In addition, as operators are
usually able to form rules for every situation to assess risks, and
those rules are an important part of their mental model, then the
ASM method needs to resemble their thinking when confronted
with abnormal situations. Therefore, to estimate the situational
risk level, a fuzzy logic system (FLS) is utilized. Finally, the
prototype based on the ASM method can trigger an alarm for
every situation that has an unacceptable risk; therefore, it is
assumed that operators consider abnormal situations by consider-
ing observable variables and hearing alarms.

In comparison with previous research work, this study has
advantages. First, situations in the ASM method might be inclu-
sive, unlike previous studies in which situations are exclusive.
Second, unlike previous networks that only include indicators and
sensors that are unable to determine the cause of abnormal
situations, the ASM method enables the most probable cause of
abnormal situations to be obtained from the situation models, thus
assisting operators to understand situations. Third, the ASM
method is able to generate risk levels for every hazardous situation
to show whether a situation is abnormal (i.e. its risk level is
unacceptable), and to help operators to understand the hierarchy
of investigations (i.e. a situation with a higher risk has priority
over other situations to be investigated).

The paper is organized as follows. Section 2 presents the theory
of BNs. The proposed ASM method is explained in Section 3. A case
study from the US Chemical Safety Board investigation reports
(www.csb.gov) is presented in Section 4 to demonstrate the
performance of the ASM method. The conclusion and future work
are summarized in Section 5.

2. Bayesian networks

A BN is defined as a couple: G ¼ ððN;AÞ; P Þ, where (N,A) repres-
ents the graph; N is a set of nodes; A is a set of arcs; P represents
the set of probability distributions that are associated to each
node. When a node is not a root node, the distribution is a condi-
tional probability distribution that quantifies the probabilistic
dependency between that node and its parents [17]. A discrete
random variable X is represented by a node nAN with a finite
number of mutually exclusive states. States are defined on Sn : fsn1;
sn2;…; snMg. The set P is represented with Conditional Probability
Tables (CPT), and each node has an associated CPT. For instance, if
ni is a parent of nj, and the nodes ni and nj are defined over the sets
Sni : fsni1 ; sni2 ;…; sni

Mg and Snj : fs
nj

1 ; s
nj

2 ;…; snj

L g, the CPT of nj is then
defined as a matrix by the conditional probabilities p(nj|ni) over
each nj state knowing its parents states (ni):

P njjpa nj
� �� �¼
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1 jni ¼ sni
1

� �
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1

� �
⋮
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1 jni ¼ sni
M
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⋯

⋮

p nj ¼ snj

L jni ¼ sni
M

� �

2
666664

3
777775
ð1Þ

Various inference algorithms can be used to compute marginal
probabilities for each unobserved node, given information on the
states of a set of observed nodes, that the junction tree algorithm
is the a classical one. Inference in BN then allows us to take into
account any state variable observation (an event) so as to update
the probabilities of the other variables. When observations are
given, this knowledge is integrated into the network and all the
probabilities are updated accordingly. A hard evidence of the
random variable X indicates that the state of the node nAN is
one of the states Sn : fsn1; sn2;…; snMg. Nevertheless, when this knowl-
edge is uncertain, soft evidence can be used. A soft evidence for a
node n is defined as one that enables the updating of the prior
probability values for the states of n [17].

2.1. Dynamic and object oriented Bayesian networks

A dynamic BN (DBN) is a BN that includes a temporal dimen-
sion. This new dimension is managed by time-indexed random
variables Xi, which is represented at time step k by a node nði;kÞAN
with a finite number of states Sni : fsni1 ; sni2 ;…; sniMg. Several time
stages are represented by several sets of nodes and an arc that
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