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a b s t r a c t

The quantification of uncertainties in simulation-based modeling traditionally focuses upon quantifying
uncertainties in the parameters input into the model, referred to as parametric uncertainties. Often
neglected in such an approach are the uncertainties induced by the modeling process itself. This
deficiency is often due to a lack of information regarding the problem or the models considered, which
could theoretically be reduced through the introduction of additional data. Because of the nature of this
epistemic uncertainty, traditional probabilistic frameworks utilized for the quantification of uncertain-
ties are not necessarily applicable to quantify the uncertainties induced in the modeling process itself.
This work develops and utilizes a methodology – incorporating aspects of Dempster–Shafer Theory and
Bayesian model averaging – to quantify uncertainties of all forms for simulation-based modeling
problems. The approach expands upon classical parametric uncertainty approaches, allowing for the
quantification of modeling-induced uncertainties as well, ultimately providing bounds on classical
probability without the loss of epistemic generality. The approach is demonstrated on two different
simulation-based modeling problems: the computation of the natural frequency of a simple two degree
of freedom non-linear spring mass system and the calculation of the flutter velocity coefficient for the
AGARD 445.6 wing given a subset of commercially available modeling choices.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Simulation-based modeling refers to the general process of
estimating a series of output responses of interest in a virtual
environment by integrating methods and approaches across
potentially numerous disciplines. Such models will generally take
one of two forms: physics-based models—such as the classic finite
element formulations or constituent physics models – or mathe-
matical models – such as empirical data fits, surrogate models, or
numerical approximations. Shared among all forms of computa-
tional models is their often inexact representation of the physical
scenario that is being modeled. This inaccuracy arises from multi-
ples sources such as an incomplete or imprecise representation of
the underlying physics of the problem—as is often experienced in
physics-based models – or numerical and round-off errors – as is
often experienced in complex mathematical models. As a result of
the assumptions made in the construction of the model, it is not
uncommon for multiple models to produce conflicting estimates
of an output response of interest given the same set of input
parameters. In such a case, a decision is often made to select a
single model among the set being considered that is thought to

best describe the system [1]. However, in the early stages of
design, there is often an incomplete model set, inducing an
uncertainty in the selection of the best model among the model
set being considered, referred to as model-form or model-
selection uncertainty [2,3]. For a simulation based model to yield
a complete estimation of a set of output responses, it is critical that
all potential uncertainties, including those induced by the model-
ing process itself, be quantified and accounted for in the prediction
of the output response of interest.

While the quantification of uncertainties in simulation-based
design, including those epistemic in nature, has been explored in
depth in the literature, most methods focus primarily upon the
quantification of parametric uncertainties in the modeling process
—inherent natural variations of either the input variables to the
models or the model parameters themselves [4–7]. In such
approaches, a representation of the uncertainty present in the
model’s estimation of the output response(s) of interest is often
achieved by developing a representation of the uncertainty inher-
ent to each of the parameters, be it probabilistic or non-
probabilistic in nature, and then propagating such information
through the simulation-based models in a rigorous manner. While
such approaches have been shown to be quite effective and
efficient for the quantification of uncertainties in the input para-
meters of the model, they often fail to completely address the
potential inaccuracy of the models themselves. Such an inaccuracy

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

http://dx.doi.org/10.1016/j.ress.2014.08.016
0951-8320/& 2014 Elsevier Ltd. All rights reserved.

n Tel.: þ1 208 885 9029.
E-mail address: riley@uidaho.edu

Reliability Engineering and System Safety 133 (2015) 79–86

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2014.08.016
http://dx.doi.org/10.1016/j.ress.2014.08.016
http://dx.doi.org/10.1016/j.ress.2014.08.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.08.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.08.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.08.016&domain=pdf
mailto:riley@uidaho.edu
http://dx.doi.org/10.1016/j.ress.2014.08.016


in the modeling process originates from one of two sources: the
uncertainty associated with the selection of the most accurate
model given multiple potential models—referred to as model-form
uncertainty in this work but also referred to as model uncertainty
in other works [1,8] – and the uncertainty associated with the
discrepancy between the model of interest and the true physical
value of interest – referred to as predictive uncertainty [9] but also
referred to as model inadequacy [10] and model-form uncertainty
[11] in other works. Such a deficiency can become critical, as it has
been observed in complex problems that the variabilities induced
by the modeling process itself, both model-form and predictive
uncertainties, can become a significant, if not greater source of the
overall uncertainty in the simulation-based modeling process than
the parametric uncertainty alone [10].

While numerous approaches have been developed and demon-
strated in the literature for the quantification of parametric
uncertainties, these approaches are not necessarily directly viable
or feasible for the quantification of model-form or predictive
uncertainties. Such a deficiency is primarily due to the different
forms and origins of the types of uncertainties, with parametric
uncertainty often being intrinsic to the problem while model-form
and predictive uncertainties are induced through the modeling
process itself [4]. Additionally, quantification of predictive uncer-
tainty will often require the introduction of additional information
regarding the theoretical true scenario of interest, often in the
form of experimental data [10]. Such data is often not abundant
and readily available in early stages of design, making the
quantification of predictive uncertainties difficult in early design.
Instead, there is often an incomplete set of information available to
the designer regarding both the constituent models within a given
model set and the true physical scenario of interest [3]. Examples
of this deficiency can include situations where multiple models are
made available to the designer to represent the same given
scenario, often run at a limited number of parameter sets or
sparse experimental data sets. This incomplete set of information
is not indicative of the lack of a correct model, as it is entirely
possible that any of the given models being considered be the
“truth model”, but is instead due to the inavailability of such
information at the particular stage of design. As this deficiency of
knowledge could theoretically be reduced and ultimately resolved
through the introduction of additional data regarding the physical
scenario of interest – whether that be additional experimental
data, more precise experimental data, or additional models – such
uncertainty is epistemic in nature [4].

It has been established that the model-form uncertainty is to be
treated as epistemic in nature, but it is common to encounter
parametric uncertainty that is aleatory. In order to maintain
epistemic generality with regards to the model-form uncertainty,
nested loop approaches are often utilized to quantify the aleatory
uncertainty within an inner loop and the epistemic uncertainty
within an outer loop [12]. Prior work on nested aleatory/epistemic
loops has focused upon the quantification of multiple types of
parametric uncertainties, where some parameters are aleatory
while others are epistemic in nature [13]. While a similar approach
is fundamentally feasible to extend to model-form uncertainties, a
framework must first be established to deal with the fundamental
difference between parametric and model-form uncertainties.

This work proposes a methodology for quantifying the uncer-
tainty in both the selection of the “best” model in the presence of
multiple available models as well as the uncertainty inherent to
the model itself by treating both uncertainties as epistemic in
nature. Prior work in the quantification of modeling-induced
uncertainties has often treated the uncertainties as probabilistic
or probabilistic-like in nature, developing probability distributions
for the models of interest and integrating them with classical
model probabilities to develop a distribution of some output

response(s) of interest [8,9,14,15]. One potential drawback of such
an approach is that by representing model likelihoods in a
probabilistic setting, there is often an accompanying assumption
that the model set being considered is complete. However, such is
often not the case in preliminary design stages where the available
models and data is often only a small subset of the full knowledge
base. Additionally, in a probabilistic framework, the quantification
of such uncertainties is often hindered by the restrictions of the
laws of classical probability, meaning that additional assumptions
must be made regarding the problem to satisfy requirements of
the probability theory and approaches utilized to quantify the
uncertainties, not necessarily due to physical data driving the
assumptions. By quantifying the modeling-induced uncertainties
as purely epistemic in nature, they can be quantified in a non-
probabilistic setting, freeing the designer of the restrictions that
accompany classical probability theory as well as alleviating the
implicit assumptions of a fully-realized data set.

2. Quantification of modeling-induced uncertainties

While methods exist in the literature exist for quantifying a
subset of the sources of uncertainty, few exist for the quantifica-
tion of uncertainty from all potential sources. This deficiency arises
from the fact that there are often constraining assumptions that
are made when quantifying uncertainty of a particular form that
limit the capability for handling uncertainties of the other forms.
These assumptions can include assumptions in the treatment of
the different sources of uncertainty as aleatory or epistemic in
nature or the availability of data and models. Riley and Grandhi
summarized the current state of uncertainty quantification
approaches that consider the contribution of uncertainties from
all three sources as it applies to simulation-based models in the
aerospace field [15].

A common feature among much of the prior work is the
probabilistic representation of modeling induced uncertainties,
even in the early stages of design. Due to the epistemic nature of
modeling-induced uncertainties at this stage in design, though,
the quantification of such uncertainties is often hindered by the
restrictions of the laws of classical probability, meaning that
additional assumptions must be made regarding the problem or
the uncertainty to satisfy requirements of the algorithms and
approaches utilize. Such assumptions can potentially either intro-
duce an additional level of uncertainty into the problem or assign
a false level of confidence in a particular result. One potential
remedy for such deficiencies is to quantify the model-form and
predictive uncertainties as purely epistemic in nature, eliminating
the confining assumptions necessary for classical probability
theory. Instead, only the current state of knowledge will be used
to determine the uncertainty in the system.

The fundamental basis for using the current state of knowledge
as the determining factor in system-level modeling-induced was
established in Allaire and Willcox’s work using a maximum
entropy estimate to the represent the level of uncertainty in a
multi-fidelity modeling problem [16]. The authors utilized a
probabilistic representation of the uncertainty in the problem by
modeling the information entropy, showing that the introduction
additional data into the framework serves to reduce the overall
level of information entropy, reducing the uncertainty associated
with the prediction of the output response of interest. Park and
Grandhi expanded upon this principal, utilizing Dempster–Shafer’s
Theory of Evidence to quantify the effects of model selection
through interval analysis [2]. By utilizing the disjunctive rule of
combination, parametric uncertainties that were epistemic in
nature were able to be integrated with the uncertainty in the
selection of the most accurate model among the model set being
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