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Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic
interactions are susceptible to node failures, yet maintaining network connectivity is essential for
network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse
of the underlying system. However, the influences of the topology of networks on their ability to
withstand node failures are poorly understood. Based on a study of the response of 2000 randomly-
generated power-law networks to node failures, we find that networks with higher nodal degree and
clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering
coefficient maintain their cohesion better during such events. We also find that network robustness, i.e.,
the ability to withstand node failures, can be accurately predicted a priori for power-law networks across
many fields. These results provide a basis for designing new, more robust networks, improving the
robustness of existing networks such as the Internet and cellular metabolic pathways, and efficiently

degrading networks such as terrorist cells.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Properly functioning networks are critical to modern life and
economies. Communications networks, power systems, and trans-
portation networks form the basis on which economic growth and
security are built. The natural environment too is built largely of
networks, from cellular metabolic pathways to large-scale ecolo-
gical networks. In all cases, these networks are subject to failures
of critical nodes and links. Communication hubs may be attacked
or experience technical failures, bridge failures may lead to large-
scale disruption in a transportation network as in the I-35 bridge
failure [1], power networks may fail due to loss of lines and
generation nodes, and ecological networks are subject to severe
disruption as species become less common in the network. Being
able to quickly and efficiently estimate the ability of a given
network to withstand node failures, that is, its robustness, is
central to being able to manage critical networks and increase
their robustness. At the same time, being able to quickly and
efficiently estimate robustness enables more efficient attacks on
networks, such as terrorist networks, that we wish to degrade.
However, there does not yet exist a method for estimating the
robustness of networks quickly and accurately based on the
topological characteristics of the network, and the existing under-
standing of the influence of topological characteristics on network
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robustness if limited. In this paper we focus on scale-free networks
and develop such a model.

Scale-free networks exhibit a power-law nodal degree distri-
bution where the probability that a given node is connected to
k other nodes is described by P(k)~ k™" [2]. Empirical evidence
indicates that nodal degree in many real networks is limited by the
physical costs of adding links to a node. Such networks can be
described by adding an exponential cutoff to the power-law
distribution P(k) ~k~7e~ /¥ where « is the cutoff above which
it becomes physically very costly to add links to a node [3-6].
Scale-free networks have been demonstrated to be tolerant to
random failures [7]. However, the combined influence of indivi-
dual measures of network topology on failure tolerance has not
been studied. Without an understanding of the relationship
between topology and robustness to node failures, we are limited
in our ability to design failure-tolerant networks across many
different domains and in our ability to efficiently degrade net-
works that we wish to attack. Here, we present a systematic study
of the effects of topological characteristics on power-law network
fault tolerance, and we develop a topology-based statistical
approach for estimating the ability of a network to tolerate node
failures.

Our work helps to address the gap in current network robust-
ness modeling in two ways. First, we develop a statistical model
for quickly estimating the robustness of a network after node
failure events for networks containing up to 1000 nodes. This
model estimates robustness for up to 75% of the original nodes
failing, making it useful not only for small failure events but also
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large-scale failure events induced by common-cause failures such
as natural disasters in which large portions of networks fail [8-11].
Second, we use our statistical model to gain insight into the topo-
logical characteristics of networks that influence their robustness.
This, together with rapid estimation of robustness, provides a
strong basis on which robustness can be included in network
design optimization.

2. Network topology

A network, or graph, is described by ¢ = {¥, €}, where ¥ is the
set of vertices, or nodes, and & is the set of edges, or links. For
directed graphs, the elements of £ are ordered pairs of distinct
vertices, while for undirected graphs, the elements of & are
unordered pairs of distinct vertices. The total number of nodes
in a graph is equal to the number of elements in ¥, that is, N = |1/.
Correspondingly, the number of edges in a graph is equal to the
number of elements in &, that is, M =|&| [12]. As an example,
consider the network representation of an electric power system.
The nodes would consist of the electric power generation plants,
substations, line junctions, and demand nodes, and the edges
would consist of the power lines connecting the nodes.

Any given graph can be uniquely represented by an N x N
adjacency matrix, A. If there exists an edge from some vertex i to
some vertex j, then the element g; is 1; otherwise, it is 0. Network
topology can be described by a variety of measures which can be
calculated from an adjacency matrix. Four such measures are
particularly useful for characterizing the structure of a network:
degree distribution, betweenness centrality, clustering coefficient,
and path length [13]. Table 1 presents the expected effect of a change
in the mean of each of these measures on network robustness.

2.1. Degree distribution

In undirected networks, the nodal degree, k, of a given node is
defined as the number of edges that are incident the node; the
mean degree of a network, (k), is defined as

1
(ky= N, ;vki. (1)
Typically, the nodes in a given network do not all have the same
degree; rather, the distribution of nodal degrees in the network
can be described by some probability density function, P(k), which
gives the probability that a randomly selected node has exactly k
edges [13]. Many networks have degree distributions that follow a
power-law, described by

P(ky~k™7, )
where y is a constant. Additionally, empirical evidence indicates
that nodal degree in many real networks is limited by the physical

costs of adding links to a node. Such networks can be described by
adding an exponential cutoff to the power-law distribution, that is,

Py~ k= 7e~k/0, 3)

where « is the cutoff above which it becomes physically very costly
to add links to a node [3-6].

Table 1
Expected effect of change in mean network measure on network robustness.

Network measure Change in mean Change in network robustness

Degree + +
Betweenness + -
Path length + _
Clustering coefficient + +

2.2. Betweenness centrality

Another important measure of network topology is the
betweenness coefficient, which is defined as the total number of
shortest paths passing through a given node. Relatedly, the
betweenness centrality of a node is defined as follows:
Chy=337M  ixjk, )

i jpij
where pj;; is the number of shortest paths (i.e., minimal sequences
of edges) from node i to node j and py; is the number of these
paths that pass through node k [12]. Betweenness and between-
ness centrality are useful measures of the importance of a node
because they quantify the number of shortest paths that will
become longer if the node is removed from the graph.

2.3. Path length

Path length, dj describes the length of the shortest path
between a given pair of nodes. Then, average path length describes
the mean of the shortest distance between all pairs of nodes in a
network. That is,

1
= dyj, 5
N(N—Uiezuj;«/ v ©)
where dj; is the length of the shortest path (i.e., number of edges)
between node i and node j.

2.4. Clustering coefficient

The clustering coefficient was introduced by [14] as a means of
quantifying the degree to which nodes are clustered in a graph.
Suppose a node i is connected to k; other nodes, or neighbors. Then
the clustering coefficient for a given node i is defined as follows:

2F;
kei(k; — 1y’

where ; is the actual number of edges that exist between each of
the neighbors.

Ci= (6)

3. Methods
3.1. Simulation

Prior work on network robustness focuses on relatively small
numbers of networks due to the limited number of real networks
for which data is available [12,15-20]. However, this significantly limits
the statistical strength of the insights that can be drawn from the
analysis. To overcome this limitation, we begin by randomly generat-
ing 2000 networks with degree distributions following a power-law
with exponential cutoff and distribution parameters representative of
scale-free networks in a variety of domains [13]. Our algorithm is a
variation on preferential attachment and is provided in the Appendix.

This algorithm is not guaranteed to produce a connected net-
work, so after generating a network we check to see if it is fully
connected using a breadth-first search. If the network is not
connected, we discard it and try again. For most degree distribu-
tions and parameters we are able to generate a connected network
in a very small number ( < 5) of attempts. We select five pairs of
distribution parameters (Table 3) to represent realistic networks
based on the network data presented in [13] (Table 2) . We generate
400 random networks for each parameter combination: 20 net-
works for each of 20 sizes (Table 4). The network sizes between 100
and 1000 are generated from a uniform random distribution.



Download English Version:

https://daneshyari.com/en/article/807782

Download Persian Version:

https://daneshyari.com/article/807782

Daneshyari.com


https://daneshyari.com/en/article/807782
https://daneshyari.com/article/807782
https://daneshyari.com

