Reliability Engineering and System Safety 133 (2015) 184-191

Contents lists available at ScienceDirect

Reliability Engineering and System Safety

journal homepage: www.elsevier.com/locate/ress Ciame

E RELIABILITY
ENGINEERING

& SYSTEM
SAFETY

Modeling and optimizing periodically inspected software rejuvenation

policy based on geometric sequences

a,b,:x

Haining Meng *"* Jianjun Liu ¢, Xinhong Hei*

@ CrossMark

@ School of Computer Science and Engineering, Xi'an Technology University, Xi'an 710048, China
b Shaanxi Key Laboratory for Network Computing and Security Technology, Xi'‘an 710048, China

¢ Aeronautics Computing Technique Research Institute, Xi'an 710068, China

ARTICLE INFO ABSTRACT

Article history:

Received 18 May 2013

Received in revised form

4 August 2014

Accepted 1 September 2014
Available online 16 September 2014

Keywords:

Software aging
Software rejuvenation
Inspection

Geometric sequence
Cost rate

System availability

Software aging is characterized by an increasing failure rate, progressive performance degradation and
even a sudden crash in a long-running software system. Software rejuvenation is an effective method to
counteract software aging. A periodically inspected rejuvenation policy for software systems is studied.
The consecutive inspection intervals are assumed to be a decreasing geometric sequence, and upon the
inspection times of software system and its failure features, software rejuvenation or system recovery is
performed. The system availability function and cost rate function are obtained, and the optimal
inspection time and rejuvenation interval are both derived to maximize system availability and
minimize cost rate. Then, boundary conditions of the optimal rejuvenation policy are deduced. Finally,
the numeric experiment result shows the effectiveness of the proposed policy. Further compared with
the existing software rejuvenation policy, the new policy has higher system availability.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With the explosive growth in internet technology and the
emergence of a number of new and advanced applications, assured
stable and reliable operation and availability of software system
has become a critical issue. The challenge is to provide the desired
availability and performance at a low cost. The reliability studies
have reported software aging phenomenon in the long-running
software system [1], which leads to the increasing failure rate or
performance degradation of a system during execution, and
eventually to the system hanging or crashing. Software aging has
been observed in many kinds of long-running systems, ranging
from business-oriented to highly critical systems, such as tele-
communication switching and billing software [2], networked
UNIX workstations [3], OLTP DBMS servers [4], Apache web server
[5], Sun Hotspot JVM |[6], spacecraft flight systems [7], and the
cloud computing infrastructure [8]. Software aging could cause
great losses in the safety-critical systems, including the loss of
human lives [9].

Software aging can be attributed to the activation and propaga-
tion of the software faults called aging-related bugs [8], which are

* Corresponding author at: 5 Gold Flower South Road, Xi'an, Shaanxi Province
710048, China.
E-mail addresses: mengning2001ji@gmail.com (H. Meng),
jiliu_imu@163.com (J. Liu), heixinhong@xaut.edu.cn (X. Hei).

http://dx.doi.org/10.1016/j.ress.2014.09.007
0951-8320/© 2014 Elsevier Ltd. All rights reserved.

transient, non-deterministic and difficult to characterize. These
faults do not immediately cause a software failure when triggered,
but manifest themselves as memory consumption, unreleased
file locks, data corruption or numerical error accumulation after
a long period of execution, making the system gradually degrade
its performance and eventually fail. Such faults are too subtle or
too costly to be removed during software development and
testing. Thus, even if software may have been thoroughly tested,
it still may have some design faults that are yet to be revealed in
practice [10].

Since software aging leads to performance degradation and
sudden failures, a lack of proper software maintenance technique
will inevitably cause serious economic losses and system down-
time. Apart from reactive methods such as system reboot, a
proactive and preventive software maintenance technique to
counteract software aging is software rejuvenation [1], which
involves occasional stopping of software system, removal of error
conditions and system restarting in a clean environment. This
process removes the accumulated errors and frees up operating
system resources, thus improving system availability and relia-
bility, and postponing or preventing the unplanned and expensive
future system failures.

Nevertheless, software rejuvenation does not solve the root
cause of software aging, consequently software aging will continue
since system start-up, so that software rejuvenation has to be
executed cyclically at predetermined or scheduled time to


www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2014.09.007
http://dx.doi.org/10.1016/j.ress.2014.09.007
http://dx.doi.org/10.1016/j.ress.2014.09.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.09.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.09.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.09.007&domain=pdf
mailto:mengning2001ji@gmail.com
mailto:jjliu_imu@163.com
mailto:heixinhong@xaut.edu.cn
http://dx.doi.org/10.1016/j.ress.2014.09.007

H. Meng et al. / Reliability Engineering and System Safety 133 (2015) 184-191 185

maintain the robustness of software system. Moreover, software
system may be unavailable during rejuvenation which will
increase system downtime and incur some costs (e.g., costs due
to the loss of business). However, unlike the downtime caused by
sudden failures, the downtime related to software rejuvenation
can be scheduled at the discretion of the user or administrator,
typically during the middle of the night or over weekends. It is
likely that the costs of downtime will be high if the downtime is
unscheduled, so the cost incurred due to software rejuvenation is
less than that incurred due to system failure. Therefore, software
rejuvenation can avoid or at least postpone software aging, and
reduce the overall downtime and related costs. The most impor-
tant problem is to plan a cost-effective rejuvenation policy to
ensure system reliability, reduce maintenance cost and downtime
cost, and improve system availability.

One of the significant issues in the software rejuvenation policy
is when and how to trigger it, due to its overhead in processing
tasks. Two main approaches to determine the timing for software
rejuvenation are time-based and inspection-based methods [11].
The time-based approaches determine the optimal rejuvenation
timing by analysis of the state relationship of software system and
assumption of system failure distribution. The inspection-based
policy is usually conducted by continuous monitoring runtime
states and failure behaviors and using data statistical analysis
method to estimate the software rejuvenation interval. However,
the relatively complex computation process generally leads to the
increasing resource exhaustion in software system. Thus, the
frequent inspections of runtime software system incur some
overhead in terms of downtime and cost. This must be traded
off with the downtime and cost due to failures to obtain maximum
benefits.

The periodical inspection mechanism has been studied to
monitor runtime system in which failures are immediately
detected and subsequently repaired. For example, Grall et al. [12]
studied the inspection-maintenance strategy for a deteriorating
system based on the average long-run cost rate, and the degrada-
tion is expressed by the Gamma process. The inspection-based
maintenance policy in hardware systems was studied [13], and the
inspection time is assumed to be exponentially distributed. Vai-
dyanathan et al. [14] investigated inspection-based preventive
maintenance in operational software system which is inspected
at regular intervals, and they obtained the optimal inspection
interval to minimize downtime and cost. Ning et al. [15] studied a
multi-granularity software rejuvenation policy, supposed the
inspection interval follows exponential distribution, and obtained
the optimal inspection rate and rejuvenation period by maximiz-
ing availability and minimizing cost.

Moreover, the periodical system inspection is difficult to dis-
cover system failures immediately. Consider that in the software
system subjected to software aging, the probability of occurring
failures is lower when system begins to execution, accordingly the
time interval between two inspections should be determined
longer. With the execution of software system, system perfor-
mance declines gradually and the possibility of failure occurrence
increases over time, so the successive inspection intervals need to
be shorter and shorter, i.e. the inter-inspection intervals constitute
a decreasing sequence.

Nagel and Skrivan [16] stated that geometric sequences are
possible in the well-known software reliability model, i.e. Jelinski-
Moranda model. The increasing geometric sequence between
failure rates of faults was observed in projects of the communica-
tion networks department of the Siemens AG [17]. Inspired by
Nagel and Skrivan's idea, we resort to a more complex but more
realistic paradigm of the decreasing geometric sequence to
describe the decreasing inter-inspection intervals, so that the
probability that failure occurred at each inter-inspection interval

tends to be a constant p. Then through simulation experiments,
the sensitivity analysis of the influence of different parameter p on
system availability and maintenance cost rate is evaluated. To the
best of our knowledge, this is the first work that geometric
sequence formulations applied in software rejuvenation policy.

The rest of this paper is organized as follows. In Section 2, the
related works are introduced. Then, in Section 3, the definitions of
geometric sequences and geometric series are given. In Section 4,
a periodically inspected rejuvenation policy is presented and
rejuvenation optimization solution and boundary conditions are
obtained by maximizing system availability and minimizing cost
rate. In Section 5, numerical results are shown and several
examples are provided to illustrate optimal rejuvenation scenarios
for different system parameters. Section 6 presents the concluding
remarks.

2. Related works
2.1. Software aging

Outages in computer systems consist of both hardware and
software failures. It has been determined that software failures
lead to more outages than hardware failures [18,19]. Software
aging is a phenomenon occurring in long-running software sys-
tems, which exhibit an increasing failure rate and lead to pro-
gressive resource consumption, performance degradation, and
eventually to the system failure, typically because of increasing
and unbounded resource consumption, data corruption, and
numerical error accumulation. Aging in a software system, as in
human beings, is an accumulative process. It is important to
highlight that a system fails due to the consequences of aging
effects accumulated over time. For example, a given aged applica-
tion fails due to insufficiency of available physical memory caused
by the accumulation of memory leaks.

Resource leaking and other aging effects can be due to aging-
related bugs in application software [11]. These bugs are hard to
reproduce, even when activated, their manifestation takes long
time to become evident, and this makes the testing time insuffi-
cient to reveal the problem in most of cases. In addition, most of
these aging problems are caused by bad software design or faulty
code [20]. However, because software is extremely complex and
never wholly free of errors, it is almost impossible to fully test and
verify that a piece of software is bug-free. This situation is further
exacerbated by the fact that software development tends to be
extremely time-to-market-driven, which results in applications
which meet the short-term market needs, yet do not account very
well for long-term ramifications such as reliability. Hence, residual
faults have to be tolerated in the operational phase.

So far, software aging phenomenon has been observed and
detected in many computing systems through different algorithms
or methods. For example, Garg et al. [3] first proposed
a measurement-based method to estimate software aging in
networked UNIX workstations by designing and implementing a
SNMP-based distributed monitoring tool to collect the operating
system resource usage and system activity data. Cassidy et al. [4]
adopted the statistical pattern recognition method to detect soft-
ware aging in large OLTP DBMS servers. Grottke et al. [5] applied
the non-parametric statistical method to estimate aging trends in
an Apache web server, through collecting the data of used swap
space, response time, and free physical memory. Cotroneo et al. [6]
revealed the presence of software aging in the Sun Hotspot JVM by
adopting both parametric and non-parametric statistical techni-
ques to analyze the trend of throughput loss and memory deple-
tion. Alonso et al. [21] presented a monitoring framework based
on aspect-oriented programming to monitor the resource usage of



Download English Version:

https://daneshyari.com/en/article/807785

Download Persian Version:

https://daneshyari.com/article/807785

Daneshyari.com


https://daneshyari.com/en/article/807785
https://daneshyari.com/article/807785
https://daneshyari.com

