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a b s t r a c t

The heat transfer and entropy generation in the parallel plate flow of a power-law fluid are analyzed.
Asymmetric convective cooling is included in the analysis by considering thermal boundary conditions of
the third kind. Using the known velocity profile, the temperature field is analytically derived. Conditions
for minimum entropy generation are determined.
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1. Introduction

Due to their widespread presence in many practical situations,
heat transfer problems in fluid systems have attracted the attention
of researchers for a long time. While the original focus was on
Newtonian fluids (a classical reference is the work by Shah and
London [1]), more recently interest in non-Newtonian fluids has
increased [2e8]. This has been provoked by the importance for
many industries (including polymer processing and the food in-
dustry) of thermal conditions in the flow of such systems through
pipes, ducts and devices of different shapes. For instance, when
dealing with polymeric materials, a key factor for the quality of the
final product is a proper temperature control. Since the actual
operating conditions are in general very complex, the analysis of
relatively simple but tractable problems is usually taken as a useful
resource to gain some insight. So it is not surprising that many such
developments have appeared in the literature, even quite recently,
which include fluid flow and heat transfer in cylindrical conduits or
between parallel plates under different thermal boundary

conditions [9e18]. Another tool which has become rather popular
in recent times (see for instance Refs. [14e19]) for the analysis of
these problems is the use of the second law of thermodynamics, in
particular in what concerns the generation of entropy within the
system. This generation is caused by the various irreversibilities
present in the process under investigation and so a detailed
knowledge of the parameters determining such irreversibilities
may prove crucial for specifying the best operating conditions. In
fact, as Bejan has pointed out [20], good engineering heat transfer
design in problems where either heat transfer augmentation or
thermal insulation are required usually involves the minimization
of entropy generation. Interestingly enough the same approach has
been recently used in different contexts by several authors, see for
instance Ref. [21].

A few years ago, using the Entropy Generation Minimization
method [20,22] two of us [23] showed that the entropy generation
in the viscous flow between parallel plates with asymmetric
convective cooling displayed a minimum for given values of the
ambient temperature and the upper and lower plate Biot numbers.
The same effect has also been found for other problems [24] that
involve the flow of Newtonian fluids. The question then naturally
arises as to whether the consideration of a non-Newtonian fluid
will affect, and if so to what extent, the features that stem out of
previous investigations. In fact, the analysis [25] of the heat transfer
problem in the zero-mean oscillatory flow of a Maxwell fluid
flowing between parallel plates with convective cooling suggests
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that the effects of viscoelasticity may produce heat transfer
enhancement with respect to that of a Newtonian fluid under
similar operating conditions. To further address the question posed
above, in this paper we have examined the problem of heat transfer
and entropy generation in the fully developed parallel plate flow of
a power-law fluid with asymmetric convective cooling. The choice
of the power-law fluid to carry out this analysis is due to two rea-
sons. On the one hand, it includes the Newtonian fluid as a special
case. On the other hand, although it has also been used to analyze
heat transfer and entropy generation in different kinds of flow [26e
47], the parallel plate flow under asymmetric convective cooling
has not been examined to our knowledge so far.

The paper is organized as follows. In the next Section, we pro-
vide a brief description of the power-law fluid and of the as-
sumptions under which our problem will be set, including all the
governing equations. This is followed in Sec. 3 by the explicit
determination of the velocity and temperature fields and hence of
the corresponding local and global entropy generation and their
analysis for both pseudoplastic and dilatant fluids The paper is
closed in Sec. 4 with some further discussion and concluding
remarks.

2. The model fluid and the governing equations

In this Section we will start by stating the problem under
consideration. This involves writing down the equations that
determine the velocity and temperature fields in the fully devel-
oped parallel plate flow of a power-law fluid with asymmetric
convective cooling. A power-law fluid is a type of generalized
Newtonian fluid for which the shear stress s is given by Ref. [48]

sh�m
����vuvy
����n�1vu

vy
; (1)

where y is the transversal coordinate, u the axial fluid velocity,m is
the flow consistency index, vu/vy is the shear rate or the velocity
gradient perpendicular to the plane of shear and n is the flow
behavior index. If n < 1 the fluid is pseudoplastic (e.g. styling gel)
while if n > 1 it is dilatant (rarely encountered, e.g. an uncooked
paste of cornstarch and water). If n ¼ 1, then it is the Newtonian
fluid. In Fig. 1 we show a schematic diagram of the systemwe want
to examine.

For the sake of deriving analytical results, we will take the
following simplifying assumptions. We consider a steady laminar
flow of an incompressible power-law fluid that takes place between
parallel rigid plates separated by a distance b ¼ 2a. The flow is
driven by a constant pressure gradient, vp/vx, in the axial x-

direction. We assume that the parallel plates are infinite so that
border effects are neglected and the velocity and temperature
profiles are fully developed. For the solution of the momentum
balance equation we assume that the velocity satisfies the no slip
condition at the plates. In turn, the heat transfer equation is solved
using boundary conditions of the third kind that indicate that the
normal temperature gradient at any point in the boundary is
assumed to be proportional to the difference between the tem-
perature at the surface and the external ambient temperature Ta,
which is assumed constant. With these conditions the amount of
heat entering or leaving the system depends on the external tem-
perature as well as on the convective heat transfer coefficient. A
fundamental assumption in this problem is that the heat transfer
coefficient of each plate is different and therefore, we have an
asymmetric convective cooling. We also assume that natural con-
vection is absent and that the thermal conductivity of the fluid, k, is
constant.

Given the previous assumptions, let us now express the balance
equations for momentum and energy along with their boundary
conditions. In dimensionless terms, upon substitution of the
expression for the shear stress as given in Eq. (1), the momentum
balance equation turns out to be the following

d
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¼ 1; (2)

where the dimensionless velocity u* is normalized by the
maximum axial fluid velocity u0 ¼ ðð1=mÞðvp=vxÞÞ1=nbnþ1=n, while
the dimensionless transversal coordinate is given by y* ¼ y/b. The
solution of Eq. (2) must satisfy the no slip boundary conditions

u*ð1=2Þ ¼ u*ð�1=2Þ ¼ 0: (3)

In turn, the energy balance equation results

d2T*

dy*2
þ
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du*
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!2

¼ 0: (4)

where the dimensionless temperature is defined as
T* ¼ kðT � TaÞbn�1=munþ1

0 .
According to our assumptions, we now consider boundary

conditions of the third kind for the thermal problem. As mentioned
earlier, this has to do with the fact that the amount of heat going
into or out of the system depends on the external temperature as
well as on the (effective) convective heat transfer coefficients. The
latter include both the thermal resistance of the plates and the
external convective heat transfer coefficients. Therefore, the
boundary conditions associated to our heat transfer problem [c.f.
Eq. (4)] are given by

dT*

dy*
þ Bi1T

* ¼ 0; at y* ¼ 1=2 (5)

and

dT*

dy*
� Bi2T

* ¼ 0; at y* ¼ �1=2: (6)

In Eqs. (5) and (6) the Biot numbers Bi1 ¼ (heff)1b/k and
Bi2 ¼ (heff)2b/k are the dimensionless expressions of the effective
convective heat transfer coefficients of the upper and lower plates,
(heff)1 and (heff)2, respectively, which, due to our former assump-
tions, turn out to be different and k is the heat conductivity of the
fluid. The effective heat transfer coefficients are defined asFig. 1. Schematic representation of the problem under analysis.
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