ARTICLE IN PRESS

Energy xxx (2014) 1-13

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Multi-objective probabilistic reactive power and voltage control with wind site correlations

Mohsen Zare ^a, Taher Niknam ^a, Rasoul Azizipanah-Abarghooee ^a, Babak Amiri ^{b,*}

ARTICLE INFO

Article history: Received 8 July 2013 Received in revised form 24 December 2013 Accepted 9 January 2014 Available online xxx

Keywords:
Modified bee swarm optimization
Multi-objective optimization problem
Point estimated methods
Reactive power and voltage control
Wind site correlation

ABSTRACT

This paper proposes a multi-objective probabilistic reactive power and voltage control in distribution networks using wind turbines, hydro turbines, fuel cells, static compensators and load tap changing transforms. The objective functions are total electrical energy costs, the electrical energy losses, total emissions produced, and voltage deviations during the next day. Since the wind sources and load demand have intermittent characteristics, a probabilistic load flow based on 2m+1 point estimated method is used to investigate the objective functions. The correlation in wind speed is considered as the distances between WTs are not large in distribution systems. Furthermore, a multi-objective modified bee swarm optimization is proposed to solve the optimization problem by defining a set of non-dominated points as the solutions. A fuzzy based clustering is used to control the size of the repository and a niching method is utilized to choose the best solution during the optimization process. Performance of the proposed algorithm is tested on a 69-bus distribution feeder. The results confirm the necessity of modeling the reactive power and voltage control problem in a stochastic framework. Also, the effects of wind site correlations on different objective functions are discussed completely.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Reactive power and voltage control is one of the most important problems in power system from management or planning point of view [1]. It is usually addressed by minimizing the predefined objective functions while regulating the voltage over feeders and controlling reactive power (or power factor) at substations using transformer LTC (Load Tap Changers) and fixed and switched capacitor banks [2]. Besides, competition in open access market and public environmental concerns encourages the use of RESs (renewable energy sources) [3]. Integration of RESs in distribution systems posed many issues for the SOs due to their intermittent nature, reverse of power flow, small *X/R* ratio of distribution lines, and radial structure of networks [4,5]. These issues have increased with high proliferation of RESs.

Many researchers have investigated the RPVC (reactive power and voltage control) problem in the distribution networks. Baron et al. suggested a supervisory RPVC scheme based on the measurements, which were available at the substation [6]. Roytelman et al. proposed a centralized Volt/Var algorithm for the distribution

Corresponding author.
 E-mail address; amiri.babak@sydney.edu.au (B. Amiri).

compensation methodology for the daily RPVC in the presence of DG (Distributed Generation) units [8]. A combined heuristic and algorithmic approach for reactive power optimization with different load level in distribution systems was presented in Ref. [9]. Viawan and Karlsson investigated the impact of DG units on the voltage and reactive power control scheme. They also proposed a proper coordination method among DG units and other traditional voltage and reactive power control apparatus [10].

system management [7]. Niknam et al. suggested a cost-based

In above researches [6–10], the uncertainties imposed on distribution system are not considered. The uncertain variables in distribution networks are loads at consumer's terminal and wind speed for WTs. Liang et al. suggested a fuzzy optimization approach to solve the Volt/Var control problem in distribution systems [11]. In their proposed method, the errors in the forecast load demand and wind speed modeled by means of fuzzy sets. They used a max—min operator to solve the multi-objective problem. Hong and Luo proposed a method to regulate the voltage profile of the operation planning in the distribution networks [2]. They used a cumulant method to calculate the bus voltage fluctuation by using genetic algorithm. Also, several other articles have been investigated the uncertainty related to the DG units in distribution networks. El-Khattam et al. proposed a new algorithm in order to evaluate the distribution network performance with DG units considering the

0360-5442/\$ — see front matter © 2014 Elsevier Ltd. All rights reserved. $\label{eq:http://dx.doi.org/10.1016/j.energy.2014.01.034}$

Please cite this article in press as: Zare M, et al., Multi-objective probabilistic reactive power and voltage control with wind site correlations, Energy (2014), http://dx.doi.org/10.1016/j.energy.2014.01.034

^a Department of Electronic and Electrical Engineering, Shiraz University of Technology, Shiraz, Iran

^b Faculty of Engineering & IT, The University of Sydney, Sydney, Australia

Nomenclature	Price $_{i_{\text{grid}}}^{t}$ electrical energy price supplied by grid i (\$/kWh).
	-RES
Symbols	rand, r , $r_{\rm b}$, $r_{\rm g}$ random number between 0 and 1. $R_{i_{\rm br}}$ resistance of branch i (Ω).
$c_{\mathrm{bmax}(\mathrm{min})}$ maximum (minimum) values of the cognitive weight	R_factor constant value between 0 and 1.
factors. $c_{ m gmax(min)}$ minimum (maximum) values of the social weight	s constant value in the range [0, 10].
factors.	T number of time intervals.
$C_{\mathrm{u(o)}}^{t}$ over (under) estimated cost coefficients	$Tap_{i_{tm}}$ tap positions vector of transformer i .
u(o)	$Tap^{\min(max)}_{i_{tm}}$ minimum (maximum) tap position of the <i>i</i> th
$\mathrm{DOT}^{\mathrm{cap},\mathrm{max}}_{i_{\mathrm{cap}}}$ maximum allowable number of switching of the i th	transformer.
capacitor.	Tap $_{i_{tm}}^{t}$ tap position of transformer i .
$DOT^trn_{i_trn}$ number of switching of the i th transformer taps.	Tap _{trn} transformer tap position matrix.
$\mathrm{DOT}_{i_{\mathrm{trn}}}^{\mathrm{trn,max}}$ maximum allowable number of changing of the i th	TF random number equals 1 or 2.
transformer tap.	U_{cap} capacitor statuses (on/off) matrix.
$E(C^t)$ expected value for the electric energy supply costs by	U_{icap} status vector of capacitor i .
RES and distribution companies (\$).	$U_{i_{\text{cap}}}^{t}$ status (on/off) of capacitor i .
$E(L^t)$ expected value for the network losses (kWh).	$V_{i,\min(\max)}$ minimum (maximum) voltage magnitude of the <i>i</i> th
$E(E^t)$ expected value for the total emission of RES and grids	bus (V).
(kg) . $E(V_d^t)$ expected value for the voltage deviation from nominal	V_i^N nominal voltage of bus i (V).
(p.u).	V_i^t voltage magnitude of bus i (V).
$E_{i_{RES}}^t$ emission rate of RES i (kg/kWh).	X vector of control variables.
E_i^t emission coefficient of energy supplied at the <i>i</i> th grid	$y_{\min(\max)}$ minimum (maximum) values of the sinusoidal
'grid	function.
(kg/kWh). $ ilde{j}$ probabilistic Jacobian matrix	Z vector of output variables.
h^t duration of time interval t (h).	z_i output random variable i .
$I_{i_{br}}^{t}$ current of branch i (A).	$\xi_{l,k}$ standard location. $\mu_{p_l}(\sigma_{p_l})$ mean (standard deviation) of the input variable p_l
Iter(iter _{max}) current (maximum) iteration.	
m number of input random variables.	$\lambda_{p_l,3}$ third standard central moments of p_l (skewness) X vector of control variables.
M ^{iter} vector of mean for all control variables.	$y_{\min(\max)}$ minimum (maximum) values of the sinusoidal
max(min)_var upper and lower limits of each control variable.	function.
n number of the decision variables.	$\lambda_{p_l,4}$ fourth standard central moments of p_l (kurtosis)
$N_{\text{efb(ob,sb)}}$ number of experienced forager (onlooker, scout) bees.	
N _{obj} number of objective functions	Subscripts
N_{rep} number of non-dominated solutions in repository N_{RES} number of RES $(N_{\text{WT}} + N_{\text{FC}} + N_{\text{HY}})$.	br branch. cap capacitor.
N_{ORV} number of output random variables.	cap capacitor. FC fuel-cell.
$N\mu$ normalized membership value	grid grid.
P(P') vector of input correlated(uncorrelated)variables.	HY hydro turbine.
P _{RES} vector of RES active power output.	RES renewable energy source.
P_{FC} vector of FC active power output.	trn transformer.
P_{iFC} vector of active power output for FC <i>i</i> .	WT wind turbine.
$P_{i_{\text{FC}}}^t$ active power output for FC i.	ξ, β, χ experienced forager, onlooker, and scout bees.
P _{HY} vector of HY active power output.	Ψ mutated vector.
P _{iHY} vector of active power output for HY i.	Subscripts
$P_{i_{\text{HY}}}^{t}$ active power output for HY <i>i</i> .	t th time interval (corresponding to tth load level).
$\left P_{ij}^{\mathrm{br}}\right ^{t}$ active power flow of line from bus i to bus j (kW).	,
$P_{i_{\text{grid}}}^{t}$ active power withdrawal from the <i>i</i> th grid (kW).	Abbreviation
$P_{i_{\text{RES}}}^{t}$ active power output of RES i (kW).	BSO bee swarm optimization
Pt minimum (maximum) nower output of the ith RES	EA evolutionary algorithm
$P_{\min(\max), i_{RES}}^{t}$ minimum (maximum) power output of the <i>i</i> th RES.	EFB experienced forager bee FC fuel cell
$P_{ij}^{\text{br,max}}$ active power limit of line between bus i and j (kW).	HY hydro turbine
${ m Pf}_{i_{ m grid}}^{{ m min}({ m max})}$ minimum (maximum) power factor of the i th grid.	MBSO modified bee swarm optimization
$\operatorname{Pf}_{i_{\operatorname{grid}}}^{i}$ power factor of grid i .	MPRPVC muliobjective probabilistic RPVC
$\mathrm{Pf}_{\widetilde{h}_{\mathrm{RES}}}^{\mathrm{min}(\mathrm{max})}$ minimum (maximum) power factor of the <i>i</i> th RES.	MRPVC muliobjective RPVC
	OB onlooker bee
Pf ^t _{i_{RES}} power factor of RES i.	PDF probability distribution function PEM point estimated method
p_l input random variable l ($l = 1, 2,, m$).	PLF probabilistic load flow
	L

Download English Version:

https://daneshyari.com/en/article/8078576

Download Persian Version:

https://daneshyari.com/article/8078576

<u>Daneshyari.com</u>