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a b s t r a c t

This paper discusses an ameliorated sample entropy-based capacity estimator for PHM (prognostics and
health management) of Li-ion batteries in electrified vehicles. The aging datasets of eight cells with
identical chemistry were used. The sample entropy of cell voltage sequence under the well-known HPPC
(hybrid pulse power characterization) profile is adopted as the input of the health estimator. The
calculated sample entropy and capacity of a reference Li-ion cell (randomly selected from the eight cells)
at three different ambient temperatures are employed as the training data to establish the model by
using the least-squares optimization. The performance and robustness of the estimator are validated by
means of the degradation datasets from the other seven cells. The associated results indicate that the
proposed health management strategy has an average relative error of about 2%.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Electrified vehicles, including BEVs (battery electric vehicles),
HEVs (hybrid electric vehicles) and PHEVs (plug-in hybrid electric
vehicles), are important ingredients of a clean, efficient, and sus-
tainable transportation system [1e3]. Traction battery packs, as a
vital energy source in electrified vehicles, are still the main tech-
nological and cost bottlenecks after decades of investigation [4,5].
In order to safely and efficiently utilize battery packs in practice, a
reliable and effective BMS (battery management system) is indis-
pensable. One of its main tasks is to provide accurate knowledge of
battery internal states, such as SOC (State of Charge) and SOH (State
of Health) [6e9]. SOC is a meter of the remaining charge in a bat-
tery, resembling a fuel gauge in traditional internal combustion
engine-based vehicles [10,11], while SOH characterizes the health
status of the battery that is often manifested as capacity loss or
power loss [12,13]. The power loss that causes declined vehicle
acceleration and braking-regeneration capabilities is not very
challenging to depict, because the increasing internal resistance
can often be recalibrated using short-term current pulses [14]. In
contrast, the capacity loss that induces a reduced vehicle driving
range is more difficult to be accurately measured or estimated [15],

as the battery packs of electrified vehicles are seldom fully charged
or discharged in realistic operations. Moreover, a direct capacity
recalibration is often time-consuming, even sometimes impossible,
and has an adverse influence on the battery lifecycle. Therefore, it is
significant and valuable to develop an accurate and robust capacity
estimator for a rapid and reliable battery health management in
electrified vehicles. In this study, the battery SOH is thus defined as
the ratio of the current capacity to the nominal capacity when the
battery is fresh.

Many approaches to estimating the battery capacity are based on
a direct analysis of battery capacity with respect to aging cycle. For
example, Rezvani et al. made a comparative study of techniques to
predict the Li-ion battery capacity [16]. Several black-box modeling
methods were applied to establish the predictionmodels by using a
portion of the capacity-cycle data pairs. Then, the predictionmodels
were validated and compared at other different aging cycles. A ca-
pacity estimation model based on the DempstereShafer theory and
Bayesian Monte Carlo methodology was also proposed [17]. In the
model, theDempstereShafer theorywas used to combine sets of the
capacity-cycle pairs from multiple cells (training cells) for initial-
izing the model. Given a portion of the capacity-cycle pairs of
another cell (validation cell), the Bayesian Monte Carlo methodol-
ogy was employed to readjust the initial model parameters and to
realize the capacity indication at other cycles. To use this category of
models,weneed to exactly know the aging cycles of the battery. It is,
however, quite difficult to knowand record the aging cycles in actual
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BMSs, particularly for HEVs. Furthermore, like themodel developed
in Ref. [17], in order to ensure good robustness against other cells of
the same chemistry and the similar aging, certain new capacity
values should be added to update the model. Nevertheless, how to
attain the new information in practical operations of electrified
vehicles is subject to query.

Sample entropy is a useful tool for exploring complexity and
predictability of a signal [18]. As the battery fades, the measurable
voltage response under the same excitation accordingly alters. This
alteration, in terms of complexity and fluctuation, can be properly
captured by calculating the sample entropy of the voltage response.
As a result, the sample entropy-based approaches were deployed to
diagnose the battery capacity. A sample entropy-based health esti-
mator was established for a lead acid battery unit [19]. In this
method, the sample entropy values of the measured sequences of
voltage and current under a dischargingpulsewerefirstlycalculated
and then applied to qualitatively analyze the battery health status.
This model had an advantage of being simple enough for on-board
applications, whereas it was incapable of yielding numerical ca-
pacity estimates, i.e., realizing a quantitative analysis. A sample
entropy-based capacity estimator for a Li-ion battery was built in
Ref. [20]. The sample entropy of the voltage sequence collected in a
complete constant-current discharge process was used as the input
of the estimator. Despite offering numerical capacity estimates, the
input acquirement was enormously costly, thanks to the long-time
voltage sequences. Additionally, the full discharge is detrimental
to the battery life. Moreover, it is worth pointing out that the esti-
mator was trained and validated using different capacity-sample
entropy data pairs over the lifetime of the same Li-ion cell. This
modeling/validation scenario based on a single battery is not
appropriate to actual BMSs, since the battery has failed, and its ca-
pacity estimation is useless. For a more practical scenario, the ca-
pacity estimator may be firstly constructed by using the data pairs
over the lifetime of a reference battery, and then applied to estimate
other batteries from the same batch that undergo a similar fade.

In this paper, we propose an enhanced sample entropy-based
capacity estimator for Li-ion battery health management in elec-
trified vehicles. The proposed estimator effectively overcomes the
shortcomings of the two forgoing sample entropy-based models by
adding three important original contributions to the related liter-
ature. First, the sample entropy of the measured voltage sequence
under the HPPC (hybrid pulse power characterization) profile is
calculated to be the input of the estimator. Since the HPPC profile
only lasts 60 s, the attainment of the input is quite easy and
convenient, as well as has negligible harmful effect on the battery
lifespan. Further, the HPPC profile comprising a discharging pulse, a
rest, and a charging pulse is able to excite the battery better than
does a single discharge or charge pulse. Second, the sample entropy

and capacity of a reference Li-ion battery (arbitrarily selected from
eight batteries) at three different temperatures are adopted to train
the estimator by nonlinear least-squares optimization. The devel-
oped estimator is thus temperature-conscious. Finally, the esti-
mator is applied to predict the capacities of the other seven Li-ion
batteries at the three temperatures, so that its performance, use-
fulness, and robustness can be adequately examined.

The remainder of this paper is structured as follows: the Li-ion
battery test is briefly introduced in Section 2; the improved sam-
ple entropy-based capacity estimator is elaborated in Section 3; the
validation results are elucidated in Section 4 followed by conclu-
sions presented in Section 5.

2. Li-ion battery test

Eight LiNMC(lithiumnickelemanganeseecobalt) oxideUR14650P
cells from Sanyo were chosen for experimentation in University of
Michigan, Ann Arbor, USA. These cells were placed in cell holders (on
the top layer) in a thermal chamber and independently tested using 8
channels of the battery tester, as shown in Fig. 1. Note that the same
loadingprofilewasapplied to theeight cells. The test schedules shown
in Fig. 2 were designed to excite and degrade the Li-ion cells. Each

Arbin BT 2000 Tester

Ethernet
Cable

Switch board

Thermal Chamber

Computer

Cells inside Chamber

Fig. 1. Configuration of battery test bench [24].
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Fig. 2. Flowchart of the test schedules [24].
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Fig. 3. Capacities of the LiNMC cells at 10 �C.
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