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a b s t r a c t

As required by the Energy Policy Act of 2005, utility companies across the U.S. are offering TOU (time-of-
use) based electricity demand response programs. The TOU rate gives consumers opportunities to
manage their electricity bill by shifting use from on-peak periods to mid-peak and off-peak periods.
Reducing the amount of electricity needed during the peak load times makes it possible for the power
grid to meet consumers’ needs without building more costly backup infrastructures and help reduce
GHG (greenhouse gas) emissions. Previous research on the applications of TOU and other electricity
demand response programs has been mainly focused on residential and commercial buildings while
largely neglected industrial manufacturing systems. This paper proposes a systems approach for TOU
based electricity demand response for sustainable manufacturing systems under the production target
constraint. Key features of this approach include: (i) the electricity related costs including both con-
sumption and demand are integrated into production system modeling; (ii) energy-efficient and
demand-responsive production scheduling problems are formulated and the solution technique is
provided; and (iii) the effects of various factors on the near-optimal scheduling solutions are examined.
The research outcome is expected to enhance the energy efficiency, electricity demand responsiveness,
and cost effectiveness of modern manufacturing systems.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The industrial sector is the largest energy consumer in the
United States [1]. It consumes 31% of the total energy and is
responsible for about one third of the total GHG (greenhouse gas)
emissions in the country [2,3]. A major portion of the energy
consumed by the industrial sector is in the form of electricity [1].
Electricity is a form of energy that cannot be effectively stored in
bulk. It must be generated, distributed, and consumed immediately.
Consumers’ needs change vastly in different seasons and even at
different time of a day [4]. In order to meet the needs during peak
periods, a huge array of expensive equipment including generators,
transformers, wires, and substations has to be kept on constant
standby, otherwise the systemwill become unstable and blackouts
may occur. This requires large extra investments for those backup
infrastructures. By 2030, about $2 trillion investments for new
generation capacities, transmission, and distribution will be
required to satisfy the growing needs [5]. On average, 1 kW hour
(kWh) of electricity generation causes 1.56 pounds (0.71 kg) of GHG

emissions [6]. Backup generators are often dirtier and less efficient
than base load generators, and therefore create more GHG emis-
sions for each kWh of electricity generated.

GHG emissions have become a vital issue to the sustainable
development of human society since they are recognized as the
leading cause of global warming and climate change. Under the
increasingly rising pressures of reducing GHG emissions from both
domestic and international society, many regulations have been
enacted to curb theemissions. TheU.S. governmenthas set upa target
to reduce energy use to 17% below 2005 levels by 2020 [7]. Accord-
ingly, technologies that may promisingly reduce GHG emissions and
postponing or eliminating the huge extra investments have attracted
great public interests. One such technology is demand response.

The U.S. FERC (Federal Energy Regulatory Commission) [8] defines
demand response as “changes in electric use by demand-side re-
sources from their normal consumption patterns in response to
changes in the price of electricity, or to incentive payments designed to
induce lower electricity use at times of high wholesale market prices or
when system reliability is jeopardized.” Demand response targets at
reducing peak demand to control the risk of potential disturbances,
avoiding extra investments in additional infrastructures, avoiding
use of more expensive and less efficient generators, and thus cut-
ting GHG emissions. It is estimated that the implementation of
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demand response programs together with energy efficiency
improvement can reduce the needs for new generation capacities
from 214 GW to 133 GW in 2030, by 38% [5]. Recent research results
have also suggested that demand response can be used as a solution
to meet supply-demand fluctuations in the grid with significant
penetration of variable renewable energy sources of intermittent
nature [9e12].

The term demand response encompasses a wide range of so-
lutions and mechanisms. According to the 2012 Survey on Demand
Response and AdvancedMetering by U.S. FERC [8], TOU (time-of-use)
pricing is among the most popular demand response mechanisms.
It utilizes time sensitive pricing structures to spread the costs of the
needs for extra equipment. The mechanism encourages the elec-
tricity consumers to shift their power demand from peak periods
(with high prices) to off-peak periods (with low prices). TOU pric-
ing is widely available from utility companies across the U.S. thanks
to the Energy Policy Act of 2005 [13]. There are about 150 entities
providing different sorts of TOU pricing programs. These entities
represent all aspects of the electricity delivery industry: investor-
owned utilities, municipal utilities, rural electric cooperatives,

power marketers, state and federal agencies, and other demand
response providers. A full list of the entities’ names is available in
the appendix of the survey report [8]. TOU pricing is also one of the
easiest implementations of demand response due to less stringent
technological requirements.

Most TOU pricing profiles, like the one provided in Table 1 [14],
divide the day into two or three periods and assign prices for each
period [15]. Electricity consumption and demand are tracked by
smart meters [16e18] and both components count towards con-
sumers’ monthly bill. The consumption rate is formulated in

Nomenclature

Bold face
S position matrix of the binary PSO algorithm
SPB personal best position matrix of the binary PSO

algorithm
SGB global best positionmatrix of the binary PSO algorithm
V velocity matrix of the binary PSO algorithm
X(t) a column vector containing the state probabilities of

the system at the end of time slot t

Upper case
BLi(t) blockage probability of machine mi during time slot t
Ci capacity of buffer bi (the largest number of parts the

buffer can hold)
CP average cumulative production of the system during

the planning horizon
CPo target cumulative production of the system during the

planning horizon
H number of hours in the finite planning horizon
N number of machines in the manufacturing system
NP swarm size of the binary PSO algorithm
NT iteration number of the binary PSO algorithm
PRi(t) production rate of machine mi (i ¼ 1 or N) during time

slot t
PRSYS(t) production rate of the system during time slot t
Qi;ðj2 j j1ÞðtÞtransition probability from state j1 to j2 during time slot

t for buffer bi
STi(t) starvation probability of machine mi during time slot t
T number of total time slots during the planning horizon
WIPi(t) work-in-process inventory of buffer bi at the end of

time slot t
WIPSYS(t) total work-in-process of the system at the end of time

slot t

Lower case
bi index of the ith buffer in the manufacturing system,

i ¼ 1, ..., N�1
b(t) billable cost indicator
cDT cost of the billable power demand of the system during

the planning horizon

cD(t) TOU demand rate ($/kW) during time slot t
cET cost of the total electricity consumption of the system

during the planning horizon
cE(t) TOU consumption rate ($/kWh) during time slot t
cFixed fixed charge during the planning horizon
cT total electricity cost
di electric power (in kW) drawn bymachinemi when it is

up
dSYS(t) power demand of the system during time slot t
dT billable power demand of the system (the highest

average kW measured in any on-peak 15-minute
interval during the planning horizon)

ei electric energy (in kWh) consumed by machine mi

when it is up
eSYS(t) electricity consumption of the system during time slot

t
eT total electricity consumption of the system during the

planning horizon
i, j, j1, j2, k, t general indexes
tC cycle time (the time needed by a machine to process a

part)
l ceiling integer number of the time slots in any 15-

minute interval
mi index of the ith machine in the manufacturing system,

i ¼ 1, ..., N
p0i reliability of machine mi

pi(t) probability of machine mi being up during time slot t
(considering both machine reliability and control
signal)

qi,j(t) probability of buffer bi in state j (j ¼ 0,., Ci) at the end
of time slot t

si(t) scheduled control signal (“on” or “off”) for machine mi

during time slot t

Greek
q0, q1, q2 parameters of the binary PSO algorithm

Functions
G(∙) state transition dynamics function
rand(∙, ∙) uniformly distributed random number generator

Table 1
A representative TOU pricing profile [14].

Season Type Time of day Consumption
rate ($/kWh)

Demand
rate ($/kW)

Fixed
charge ($)

Summer
(JuneSep)

Off-peak 7pme1pm 0.08274 0 51.42
On-peak 1pme7pm 0.16790 18.80

Winter
(OcteMay)

Off-peak 9pme10am 0.08274 0
On-peak 10ame9pm 0.11224 8.12
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