Energy 61 (2013) 179-195

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery

ScienceDire

In-Hwan Choi, Sangick Lee, Yutaek Seo, Daejun Chang*

Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea

ARTICLE INFO

Article history: Received 19 October 2012 Received in revised form 14 July 2013 Accepted 22 August 2013 Available online 2 October 2013

Keywords: Cascade Rankine cycle LNG cold energy recovery Power generation cycle Organic Rankine cycle Exergy efficiency Economic evaluation

ABSTRACT

This study proposes a new concept called the cascade Rankine cycle, which recovers LNG (liquefied natural gas) cold energy for power generation, optimizes the cycle by investigating the effects of key parameters on its performance, and compares its thermal efficiency, exergy efficiency and economic evaluation to those of the conventional alternatives. The cascade Rankine cycle consists of multiple stages of the organic Rankine cycle in a layered structure in which the first stage encompasses the second one that, in turn, encompasses the next. Due to its layered configuration, optimization of the cycle is straightforward and involves sequentially optimizing the individual stages. Optimization of the subsequent stages, however, required process simulation considering the equipment efficiency and the thermodynamic properties of the working fluid. Process simulation indicated that the indicators such as net power output, thermal efficiency, and exergy efficiency generally increase as the number of stages increases. These indicators were, however, significantly affected by the thermodynamic properties of the working fluids. The proposed cycles demonstrated significantly better performance in these indicators than the conventional cycles. The three-stage cascade Rankine cycle with propane as the working fluid exhibited the highest net power output, thermal efficiency and exergy efficiency within the set.

Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The supply chain of liquefied natural gas (LNG) generally consists of four segments: natural gas production, LNG production, LNG transport, and LNG regasification. Within this supply chain, the LNG production segment consumes a significant amount of exergy due to the required liquefaction processes. Numerous liquefaction processes have been developed to reduce the energy required for liquefaction. Of the commercialized processes, the C3 mixed refrigerant cycle is known to exhibit the highest efficiency, consuming approximately 300 kWh of electrical energy to produce one ton of LNG, or 1080 kJ/kg-LNG [1].

In the LNG regasification segment, LNG is converted into natural gas and releases its cold energy into the heating medium, usually seawater, without any useful byproduct. In other words, the large amount of energy absorbed during the LNG production segment is discharged into the seawater. The cold energy contained in LNG is approximately 864 kJ/kg at the ambient temperature (20 °C), which is equivalent to 240 kWh/t of LNG [2].

The effective recovery of LNG cold energy has drawn significant research attention. LNG cold energy can be directly utilized in the air separation, ethylene separation, liquefied CO_2 production, freezing of food, hydrogen liquefaction, low-temperature crushing, freeze drying, high purity ozone production, and many other applications.

In addition to direct utilization, the LNG cold energy can be recovered through power generation. While the direct expansion cycle (DEC) directly utilizes LNG as a working fluid, the organic Rankine cycle (ORC) uses seawater as the primary heat source and LNG as the heat sink with other hydrocarbons as working fluids. Since both the DEC and the ORC have relatively low first law efficiency due to the utilization of the ambient heat sources, the modified ORC and the Combined Cycle (CC) have been developed to improve their thermal efficiency and performance using various heat sources and working fluids.

Many studies have been dedicated to developing power cycles from different temperature heat sources and working fluids and improving the efficiency of their cycles. Table 1 presents a review of previous studies on power generation cycles using cold energy sources. They are classified into three groups according to the heat source temperature: high-temperature heat sources, mediumtemperature heat sources and low-temperature heat sources.

^{*} Corresponding author. Tel.: +82 42 350 1514/47; fax: +82 42 350 1510. *E-mail address*: djchang@kaist.edu (D. Chang).

^{0360-5442/\$ –} see front matter Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.energy.2013.08.047

Nomenclature \dot{V}	volume flow rate, m ³ /s		
Т	temperature, K		
DEC direct expansion cycle Ex	exergy transfer rate, kW or kJ/s		
ORC organic Rankine cycle Δex	exergy change per unit mass, kJ/kg		
CC combined cycle ΔH	enthalpy change, kJ		
CRC cascade Rankine cycle h	specific enthalpy, kJ/kg		
C1 methane as a working fluid s	specific entropy, kJ/kg K		
C2 ethane as a working fluid			
C3 propane as a working fluid Subscri	pts		
LNG liquefied natural gas 0	ambient condition (1 atm, 298 K)		
MSVEP maximum saturated vapor enthalpy pressure, bar net	net output from a cycle		
NG natural gas net, <i>i</i>	net output from <i>i</i> -th-stage of cycle		
LCC life cycle cost input	input into a cycle		
CAPEX capital expenditure output	output from a cycle		
OPEX operational expenditure in	inlet		
HFC hydrofluorocarbons out	outlet		
Pump_LNG boosting pump of LNG p	polytropic efficiency		
Pump_WF, <i>i</i> boosting pump of working fluid in <i>i</i> -th stage p_turbine polytropic efficiency of turbine			
Pump_SW, <i>i</i> boosting <i>i</i> -th pump of seawater in <i>i</i> -th stage is isentropic efficiency			
Turbine, <i>i</i> turbine in <i>i</i> -th stage is_pum	is_pump isentropic efficiency of pump		
Vaporizer, <i>i</i> vaporizer in <i>i</i> -th stage is_turbine isentropic efficiency of turbine			
Condenser—Evaporator, <i>i</i> condenser—evaporator in <i>i</i> -th stage pump pump			
$P_{V, i}$ pressure of working fluid at the <i>i</i> -th vaporizer, bar pump_	LNG boosting pump of LNG		
$P_{C, i}$ pressure of working fluid at the <i>i</i> -th condenser pump_	pump_WF, <i>i</i> boosting pump of working fluid in <i>i</i> -th stage		
–evaporator, bar pump_	pump_SW, <i>i</i> boosting pump of seawater in <i>i</i> -th stage		
w work per unit mass, kJ/kg turbine	e turbine		
W power, kW or kJ/s turbine	e, <i>i</i> turbine in <i>i</i> -th stage		
Q heat transfer rate, kW or kJ/s th	thermal		
<i>m</i> mass flow rate, kg/s ex	exergy		
m mass, kg loss	loss		
k ratio of C_p and C_v i	integer number (1,2,3,)		
C_p constant pressure heat capacity, kJ/kg K j	integer number (1,2,3,)		
C_{ν} constant volume heat capacity, kJ/kg K			
n polytropic coefficient Superso	Superscript		
ρ liquid density, kg/m ³ s	isentropic process		
η efficiency, % n	polytropic coefficient		
P pressure, Pa			

 Table 1

 Summary of previous investigations on power generations combined with cold energy recovery.

Reference	Cycles	Cycle description	Working fluids	Heat source	Heat source temperature
Liu et al. [3]	ORC	Conventional ORC	10 Working fluids	High	300 °C
Wei et al. [4]	ORC	Conventional ORC	HFC-245fa	High	370 °C
Desai and Bandyopadhyay [5]	Modified ORC	ORC with regeneration and turbine bleeding	16 Organic	High	370 °C
Tsatsaronis and Morosuk [6]	CC	ORC with gas-turbine	N ₂	High	1290 °C
Hisazumi et al. [7]	CC	ORC with gas/steam turbines	HFC	High	1000-1300 °C
Kim and Ro [8]	CC	ORC with gas turbine	-	High	1350 °C
Miyazaki et al. [9]	CC	ORC with refuse incinerator	Ammonia-water	High	950 °C
Lu and Wang [10]	CC	ORC with combustion process	Ammonia-water	High	990 °C
Deng et al. [12]	CC	Combined cycle	CO ₂	High	1250 °C
Zhang and Lior [13]	CC	ORC with Brayton cycle	CO ₂	High	1300 °C
Zhang [14]	CC	ORC with Brayton cycle	CO ₂	High	720 °C
Vélez et al. [15]	ORC	Transcritical ORC	CO ₂	Medium	60–150 °C
Qiang et al. [16]	CC	ORC with DEC	Propane	Medium	60–90 °C
Shi and Che [17]	CC	ORC with DEC	Ammonia-water	Medium	157–197 °C
Roy et al. [18]	ORC	Conventional ORC	R-12, R-123, R-134a	Medium	140 °C
Chen et al. [19]	ORC	Supercritical Rankine cycle	Zeotropic mixture	Medium	120-200 °C
Wang et al. [20]	ORC	Conventional ORC	Various working fluids	Medium	70–230 °C
Baik et al. [21]	ORC	Subcritical ORC/Transcritical ORC	Four R125-based HFC	Medium	100 °C
Wang et al. [22]	ORC	Conventional ORC	Ammonia-water	Medium	200 °C
Liu and Guo [23]	Modified ORC	Organic Rankine cycle with a vapor absorption process	Binary mixture (CF_4 and C_3H_8)	Low	20 °C
Szargut and Szczygiel [24]	CRC	Cascade Rankine cycle	8 Organic compounds	Low	15 °C

Download English Version:

https://daneshyari.com/en/article/8079067

Download Persian Version:

https://daneshyari.com/article/8079067

Daneshyari.com