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a b s t r a c t

Modern systems, civilian (e.g. automotive), and military (manned and unmanned aircraft, surface
vehicles, submerged vessels), suffer initial design faults or failure modes (FMs), including software bugs,
which detrimentally affect the system's reliability and availability. FMs must be removed or mitigated in
impact during initial testing, including accelerated testing, in order for the system to meet its reliability
requirements and operate satisfactorily in the field. This paper concerns models for reliability growth in
which the behaviors of FMs are assumed independent, but of different types. Test effort is guided by
prior information, expressed probabilistically, on the random number and tenacities of such FMs that are
of various origins in the designs. Estimation of the numbers of FMs that will ultimately activate while in
the field is considered here.

Published by Elsevier Ltd.

1. Introduction

Failure mode removal from any system, both hardware and
software, is a dynamic uncertain process; see [1–19] for various
discussions of problem approaches. In [5,6,8,9,16] an unknown
number of FMs are supposed present in the system initially, and
the subsequent random times until FM activations are indepen-
dent and identically distributed; in [8,9] the unknown number of
failure modes is assumed deterministic and asymptotic arguments
are used for its estimation; in [5,6] the unknown number of FMs
has a Poisson distribution, and estimation of the Poisson mean is
discussed; [13] includes a Bayesian treatment of the general
model; [16] considers a dynamic statistical model for mean
number of FMs remaining. The models in [3,4] are widely used
and FM activations occur according to a nonhomogeneous Poisson
process; a Bayesian treatment of this model appears in Refs.
[14,15]. Additional nonhomogenous Poisson process models have
been suggested, including that of [17]. In [12] time series are used
to summarize software failure data; parameter estimation uses a
genetic algorithm; estimation is illustrated with small data sets. In
[18,19] a neural network approach is discussed. In [7,9] reliability
growth models are suggested for the management of system
testing. In [10] a series system of subsystems with resulting FM
masking is considered. The goal of failure avoidance, or system
reliability growth remains a concern to military and civilian system
designers, testers and operators; see Toyota automobile accelera-
tor pedal occasional mishaps ([20] and also [21]).

This paper presents an approach to modeling and statistical
analysis based on familiar applied stochastic process theory. The
model notion is that of identifying failure mode creation and
removal with an “infinite server queue”, a generalized so-called
M/G/1 system; here M refers to a general Markovian/memoryless
“arrival process” of failure modes into a system; G represents the
general distribution function of the “residence time”, or “service
time” in queueing language, of any FM in the system: either until
discovered and rectified, or, if not discovered during test, activates
in use, thus interrupting field operation usage and possibly causing
fatality. The individual FM residence times are here assumed
independent and identically distributed; however see [22] for
plausible variation. Finally, “1” refers to the practically infinite,
or unlimited number of locations/sites in the system where FMs
can reside; cf. [23]; these are “servers” in queueing context as in
Ref. [24]. Note that here the items present are all eligible for
service/removal when recognized. Later work will recognize con-
gestive servers, and evaluate priority removal. The M-arrival
process can include initial numbers of FMs of different types
having independent Poisson distributions, with additional FMs
that are inadvertently inserted during development according to
nonhomogeneous Poisson processes (NHPPs). The assumptions
that the unobservable initial number of FMs in a system have
Poisson distributions and that the unobservable insertion of
additional FMs in a system occur according to NHPPs is convenient
and has been made before; see [24–26]. Since the presence of a FM
in a system is a “rare event” the assumptions are reasonable, prima
facie.

The M/G/1 queue can represent many features encountered in
reliability growth data, as has been pointed out by [24–26]. In [24]
the NHPP is exploited to describe single-type fault (FM) occurrence;
our current results represent realistic recurrence of non-removed
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FMs. In [25] the discovery of FMs is modeled as occurring according
to a NHPP and the times until removal of FMs as independently
distributed random variables. The present paper extends the NHPP
model of [26] to include fault (FM) type differences plus the realistic
probability that actuated FMs are not removed until a removal
success. A FM's residence time can include multiple occurrences of
a FM due to unsuccessful attempts to remove the FM and may be
summarized by a renewal process or even an epidemic process; see
[27]. Our present work covers the likely random variation between
activation-recurrence rates of different FMs; see (4)–(7) in this paper.
These are seen to be natural and realistic extensions of [24–26]. The
actual number of FMs is unknown and random, and is realistically
controlled by the balance of the arrival and the service or fault-
removal process, and so may actually be small, but can grow
indefinitely, as in [28]. Note that the mathematical model can be
time – or system age – dependent, so different, even new, FM types
can be represented during a system design's lifetime.

The model proposed here, and the statistical methods based on
it, does not explicitly represent the phenomenon of mode masking,
meaning that early FM discovery, e.g. of a defect in a vehicle
ignition system, or missile launch stage, does not here effect
appearance of later FMs that may occur had the early FM not
occurred, e.g. in vehicle steering, or missile guidance and detona-
tion. We may view the present model as of one stage, s, of an
S-stage series or sequentially operating system. The present model
omits desirable mention of Prognostic Health Management (PHM),
meaning anticipatory replacement of failure-imminent compo-
nents or subsystems.

FMs remaining after testing detrimentally affect system field
reliability and availability. The purpose of the model and its
generalizations is to infer the properties of FMs remaining follow-
ing system testing. The formal model is presented and discussed in
Section 2 with examples of behavior that can be represented with
the multi-type M/G/1 queue. Of particular interest are statistical
models that represent the inherent variation between FMs.
A discussion of statistical inference is in Section 3. Section 4
illustrates issues of statistical inference using sample software
testing data. The statistical analysis suggests that several different
models summarize the data well and that more and extended
software testing would be prudent; models with more parameters
appear unneeded to summarize these data. The paper ends with
conclusions in Section 5.

2. Model for failure mode increase and decrease

Let
� λkðtÞ ¼ Random arrival rate of failure modes (FMs) of type k

into the system at time t, where λkðtÞis the rate of a time-dependent
Poisson process. These lie dormant until “flare up” or activation. In
other, and subsequent work we can allow FMs to issue warnings or
diagnostic symptoms that, if detected, can forestall serious failure.
Such FMs can result from human intervention to repair others.
FkðτÞ ¼ P Tk ≤τ

� �¼ Probability distribution of Tk, the random time
until the activation of a single type k FM.

Initially it is assumed that such times can repeat themselves, to
represent activations that occurred repeatedly but have not been
successfully removed; the times between activations being inde-
pendent and identically distributed. A special case of inter-
activation time distribution is the exponential distribution,
expðμkÞ,
Fkðτ;μkÞ ¼ 1�expf�μkτg ð1Þ

Note that the inter-activation time distribution function
FkðτÞ, and the arrival rate, λkðtÞ, can both be affected by environ-
mental influences, including human maintenance or operator, by

incorporation of suitable parameter sets and variables. Such
important effects are not treated here; they are left for later work.

Next,

� ρk ¼ Probability that a FM of type k is removed on any
activation. This parameter is initially assumed constant no
matter how many responses to activations have occurred; it
is a candidate for modification to represent learning.

� AkðτÞ ¼ Event that a failure mode of type k, is active, i.e. a latent
failure, in the system at time τ after it “arrives” in a design or a
copy thereof.

Then

PfAkðτÞjFkðdÞ;ρkg ¼ ∑
1

n ¼ 0
Fnn
k ðτÞ�Fnðnþ1Þ

k ðτÞ
h i

1�ρk

� �n ð2Þ

where Fnn is the n-fold convolution of the distribution F with itself.
This simply says that a fault that arrives in the system at t ¼ 0 has
(independently) activated any number, n, times but has not been
removed by time τ. In the special expðμkÞ case

P AkðτÞjexpðμkÞ;ρk

� �
¼ ∑

1

n ¼ 0
e�μkτ

ðμkτÞn
n!

ð1�ρkÞn ¼ e�μkρkτ ð3Þ

Following [7], assume μk is a realization of independent
identically distributed random variables with distribution function
HkðμkÞ ¼ P μk ≤μk

� �
; that is, while each FM has independent expo-

nential times between activations, different FMs have different
mean inter-activation times drawn from a mixing distribution,
HkðdÞ. From (3), this then implies that

E e�μkρkτ
� 	¼ Z 1

0
e�μkρkτdHk μk

� �¼ ~Hk ρkτ
� �

; ð4Þ

where ~HkðsÞ is the Laplace-Stieltjes transform of the distribution
function HkðμkÞ evaluated at s¼ ρkτ.

We propose two different forms for the mixing distribution, Hk

(A) Classical gamma.
(B) Positive stable law ([27]).

First, a simple explicit result for the transform of the gamma
distribution assumed by [29] with scale βk and shape αk is

~GkðρkτÞ ¼ 1þρkτ
βk


 ��αk

ð5Þ

Next, the positive stable law has relevant transform, for shape
parameter 0oαko1,

~SkðρkτÞ ¼ exp � ρkτ
βk


 �αk
� �

ð6Þ

notationally (only) matching the stable scale and shape para-
meters to those of the gamma for 0oαko1.

It is evident that (5) and (6) represent the distribution of
residence time in the system of corresponding type k fault. Let Hk

here represent either Gk or Sk: the probability the residence time is
less than or equal to τ is

PðAkðτÞcÞ ¼ 1� ~HkðρkτÞ ð7Þ
Put

� NkðtÞ¼Random number of FMs, that activate and are removed
from the system during exposure time t, i.e. within ð0; t�. Note
that this includes those initially within the system plus those
that are introduced thereafter.

� RkðtÞ¼Random number of native FMs that either have not yet
activated or have activated but are not (yet) removed during
exposure time t.
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