Reliability Engineering and System Safety 130 (2014) 61-68

Reliability Engineering and System Safety ﬁ%

journal homepage: www.elsevier.com/locate/ress

) . . . "
Contents lists available at ScienceDirect = ENCINEERING
& SYSTEM

SAFETY

A conservative bound for the probability of failure of a 1-out-of-2 @CmssMark
protection system with one hardware-only and one software-based

protection train

Peter Bishop, Robin Bloomfield, Bev Littlewood *, Peter Popov, Andrey Povyakalo,

Lorenzo Strigini

Adelard and Centre for Software Reliability, City University, Northampton Square, London EC1V OHB, UK

ARTICLE INFO

ABSTRACT

Article history:

Received 31 October 2012
Received in revised form

2 August 2013

Accepted 7 April 2014
Available online 16 April 2014

Keywords:

Software reliability

Redundancy and diversity
Probability of failure on demand
1-out-of-2 system

Protection system

Redundancy and diversity have long been used as means to obtain high reliability in critical systems.
While it is easy to show that, say, a 1-out-of-2 diverse system will be more reliable than each of its two
individual “trains”, assessing the actual reliability of such systems can be difficult because the trains
cannot be assumed to fail independently. If we cannot claim independence of train failures, the
computation of system reliability is difficult, because we would need to know the probability of failure
on demand (pfd) for every possible demand. These are unlikely to be known in the case of software.
Claims for software often concern its marginal pfd, i.e. average across all possible demands. In this paper
we consider the case of a 1-out-of-2 safety protection system in which one train contains software (and
hardware), and the other train contains only hardware equipment. We show that a useful upper (i.e.
conservative) bound can be obtained for the system pfd using only the unconditional pfd for software
together with information about the variation of hardware failure probability across demands, which is
likely to be known or estimatable. The worst-case result is obtained by “allocating” software failure

probability among demand “classes” so as to maximize system pfd.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents an approach for estimating a conservative
probability of failure on demand (pfd) that is applicable to a 1-out-
of-2 diverse protection system where one of the protection trains
is hardware-based and the other is computer-based.

The use of a protection system is an accepted strategy for
hazardous industrial processes. The protection system indepen-
dently monitors the industrial process and if it detects a departure
from the safe operational envelope, it initiates some action that
overrides the normal control system to place the process in a
safe state.

The departure from the safe operational envelope is known as a
demand on the protection system. Demands typically arise from
different failures within the physical process and control systems.
For example, in the nuclear industry, the underlying physical
causes of demands on the protection system are known as
postulated initiating events (PIE [1]), and the overall plant safety
analysis will identify a set of PIEs that represent credible plant

* Corresponding author. Tel.: +44 20 7040 8420; fax: +44 20 7040 8585.
E-mail address: b.littlewood@csr.city.ac.uk (B. Littlewood).

http://dx.doi.org/10.1016/j.ress.2014.04.002
0951-8320/© 2014 Elsevier Ltd. All rights reserved.

failures (such as loss of electrical grid connection or a rupture in
the primary coolant circuit). As part of the design process,
maximum rates are assigned for each PIE and, to reduce the risk
of a PIE that occurs frequently, diverse means are used to detect
the departure from normal operation (such as temperature and
pressure). These are normally implemented in diverse trains of
equipment using different types of sensors and with different
means of achieving a safe state for the same PIE.

To improve its reliability, a protection train typically also has a
high level of internal redundancy to tolerate hardware failure in
the sensors, protection logic, actuators and plant components (like
valves or pumps). Even so, if sufficient hardware sub-components
fail, the train will be unable to respond to the demand triggered by
the PIE. Depending on the PIE involved, different sets of hardware
components of the protection train need to be able to respond
successfully to demands initiated by different PIEs. Typically the
hardware probability of failure on demand for a PIE is determined
by fault tree analysis [2], where the minimal cutsets of failed sub-
components are identified [3] that result in a demand failure. By
quantifying and summing the minimal cutsets, the probability of
failure per demand for a given PIE can be computed.

Probabilistic analysis of hardware-based systems is well estab-
lished, but less work has been carried out on including the impact


www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2014.04.002
http://dx.doi.org/10.1016/j.ress.2014.04.002
http://dx.doi.org/10.1016/j.ress.2014.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.04.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.04.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.04.002&domain=pdf
mailto:b.littlewood@csr.city.ac.uk
http://dx.doi.org/10.1016/j.ress.2014.04.002

62 P. Bishop et al. / Reliability Engineering and System Safety 130 (2014) 61-68

of software failures in a computerized protection system. In this
paper, we present a method that allows a conservative estimate to
be made for the probability of failure on demand (pfd) for diverse 1
out-of-2 protection trains where one train is software based, given
the form of claims commonly offered for software reliability.

2. Terminology and modeling approach

As discussed above, a protection system responds to demands —
events that require its intervention. Whether the protection
system will respond correctly or will fail on the demand depends
on the characteristics of the demand. The protection system may
fail - that is, fail to start the required safety action - if, for instance,
some hardware component (or redundant combination of compo-
nents) that is needed to respond correctly is permanently faulty, or
suffers a transient fault, at the time of that demand; or due to a
design defect in hardware logic or in software. We therefore can
also identify a specific demand as a vector of values that together
determine the likelihood of any of the protection trains failing

® since the protection system monitors the values of state
variables of the plant (e.g. pressures, temperatures, measures
of flows) and may fail or not depending on their values
(especially software bugs may depend on the exact values of
the data), this vector includes the sequences of values that are
read during the demand event;’

® since hardware probabilities of failure are affected by environ-
mental variables (e.g. temperature, humidity, atmospheric
pressure, level of electromagnetic radiation, in the various part
of the system), these variables are also parts of the vector.
Probabilities of hardware failure are usually available for ranges
of variables.

The demand is thus a (vector) random variable; processes in
the protected plant and its environment determine the times of
occurrence of each demand as an event and the value of the
demand vector. In what follows we will use just the term
“demand” when the meaning “event” or “vector” is clear from
the context.

The demand vector includes all variables that have an effect on
the success or failure of any part of the system. Thus, for instance,
temperature values at a certain sensor in the plant are part of the
demand even if only one of the protection trains reads them. But
some components of the demand affect more than one protection
train. Thus, for instance, an earthquake that affects two protection
trains will increase the probability of failure of both, possibly (if
the shock is way above their design limits) by 1. Thus we can
model common causes of failure via demands which imply high
probability of failure for both trains.

This form of modeling has been used in earlier work [4-6] to
model in a consistent way failures due both to physical causes and
to design, and thus both hardware and software failures. The basic
idea here is one of variation of the probability of system failure
between different demands, as an explanation for dependence in
failure behavior between diverse trains to be used in a fault
tolerant system (e.g. a 1-out-of-2 system). The idea is a simple
one. The probability of a system failing on a demand will, in
general, vary across demands. Since the component values of the
demand vector together determine the likelihood of a protection

! With software, one could imagine the protection sytem as realizing a
deterministic function of the values it reads: the probability of demand could only
be 0 or 1. In practice, whether it fails may depend on the software's past history. So
a specific demand implies a probability of system/train failure, which is not
necessarily 0 or 1, rather than deterministic failure or success.

train failing, and if the system's design is such that we can exclude
failures of one train directly causing failures of the other, the
failures of both trains on a specific demand (a specific value of
the demand vector) can be assumed independent conditionally on
the demand.

Interest then centers upon the covariance (across all demands)
between the two functions (of the demand) that describe the
probabilities of failure of the two trains of a 1-out-of-2 system.
When there is positive covariance - roughly, when the demands
that associated with a higher probability of failure for one train
also tend to associate with a higher probability of failure for the
other - then it is more likely that there will be positive correlation
between the trains’ failures on a random demand. In such a case,
wrongly assuming independence of failures between the two
trains will give an optimistic estimate of the reliability of the
1-out-of-2 system.?

An achievement of these conceptual models is their establish-
ment of, and explanation for, the inevitability of dependence
(positive or negative) of failure behavior between redundant,
diverse systems, hardware or software. They thus support the
empirical evidence for such dependence that comes, for example,
from experiments: see e.g. [7,8]. No longer is it possible to claim
that the two diverse protection trains of a 1-out-of-2 fault tolerant
architecture will fail independently of one another, without mak-
ing very strong claims: essentially that there is no variation of
failure probability across demands for at least one of the trains.
This means that the simple arithmetic of independence is not
applicable for the computation of the system reliability as a
function of the component reliabilities. Specifically, the pfd of a
1-out-of-2 system over all demands cannot simply be assumed to
be the product of the pfds of the two trains. Informally, it means
that we need to know how dependent the failures of the trains
will be.

Reliability estimation of such a 1-out-of-2 system is non-trivial
as it seems to require a complete knowledge of how the prob-
ability of failure varies between demands.

However, we can reason by failure classes, defining a “class” as
a set of demands such that the estimated pfd is the same for all
demands in a class. For simple hardware, a “class” means a set of
demands such that correct response to any of them requires the
same set of subsystems to function correctly. If the demand classes
for two protection trains do not exactly coincide, a demand class is
defined as a set of demands such that each one of the trains has
constant pfd over all the demands in the set. This will generally
involve more demand classes for the system than that would be
defined for each train alone. If this definition led to too many
classes of demands, their number can be contained, and kept
tractable, by merging classes and using the highest pfd among
those classes thus merged. It can easily be shown that given
conditional independence on each demand, and constant pfd
across the class for at least one of the two trains, failures of the
two trains are conditionally independent conditionally on the
demand class [9]. Thus, the system pfd conditional on a certain
demand class is obtained by multiplying the pfd values, for that
demand class, of the two trains.

For software, things seem much more problematic: software
faults are such that among two demands that are from all other
viewpoints in the same “class”, the software may fail on one but
not the other depending on the values of the inputs to the
software. In fact, claims about software reliability are often limited
to the marginal probability of failure on demand based on
arguments of quality of production and verification, “proven in

2 It is possible to do better than independence if there is negative association
between the probabilities of failure over the demands.



Download English Version:

https://daneshyari.com/en/article/807921

Download Persian Version:

https://daneshyari.com/article/807921

Daneshyari.com


https://daneshyari.com/en/article/807921
https://daneshyari.com/article/807921
https://daneshyari.com/

