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a b s t r a c t

We consider a wide class of models that includes the highly reliable Markovian systems (HRMS) often
used to represent the evolution of multi-component systems in reliability settings. Repair times and
component lifetimes are random variables that follow a general distribution, and the repair service
adopts a priority repair rule based on system failure risk. Since crude simulation has proved to be inefficient for
highly-dependable systems, the RESTART method is used for the estimation of steady-state unavailability and
other reliability measures. In this method, a number of simulation retrials are performed when the process
enters regions of the state spacewhere the chance of occurrence of a rare event (e.g., a system failure) is higher.
The main difficulty involved in applying this method is finding a suitable function, called the importance
function, to define the regions. In this paper we introduce an importance function which, for unbalanced
systems, represents a great improvement over the importance function used in previous papers. We also
demonstrate the asymptotic optimality of RESTARTestimators in thesemodels. Several examples are presented
to show the effectiveness of the new approach, and probabilities up to the order of 10�42 are accurately
estimated with little computational effort.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Estimating dependability for a highly-dependable multi-com-
ponent system is a problem of great interest in different areas such
as computer systems, telecommunications, mechanics, aircraft
design, power utilities, and many other engineering fields. Increas-
ing demand for system reliability cannot depend on the increasing
reliability of components due to technological restrictions. The
alternative is a fault-tolerant system which, through the use of
redundancy, has the ability to operate properly in the presence
of faults. Any system failure should have a small probability of
occurring; that is, it should be a rare event. It is important to
estimate such probabilities because when a rare event does occur,
its consequences may be catastrophic. For example, network
servers (studied in Section 5.3) play an increasingly important
role due to the rapid growth in demand for internet services, and a
server breakdown event may cause significant financial losses. As
a result, redundancy is usually built in to prevent services from
breaking down.

Even assuming exponential distributions for component fail-
ures and repairs, analytical or numerical solution methods are

impractical due to the excessive number of states of the contin-
uous time Markov chain (CTMC). For generally distributed failure
and repair times, effective numerical techniques, for all practical
purposes, do not exist. Thus, simulation becomes the only viable
technique for analysis. However, any estimation of rare event
probability with the “crude” Monte Carlo technique requires a
prohibitively large number of trials in most cases. Thus, fast
simulation methods for rare events are required. Several techni-
ques that use importance sampling have been developed to force
the system to fail more frequently within a simulation experiment;
see [1] for an overview of these methods, [2] for a recent
application in reliability and [3,4] for the related Cross–Entropy
method. In the literature [5], a CTMC model with finite state space,
whose transitions correspond to component failures and repairs, is
usually adopted.

The other important method for rare event simulation is
RESTART (Repetitive Simulation Trials After Reaching Thresholds).
This method has a precedent, of much more limited scope [6],
in the splitting method described in [7]. Recent applications
of splitting to reliability problems can be seen in [8,9]. M. and
J. Villén-Altamirano coined the name RESTART in 1991 [10] and
made a theoretical analysis that yields the variance of the
estimator and the gain obtained with one threshold. A detailed
analysis with multiple thresholds is made in [11], where optimal
values for thresholds and the number of retrials that maximize the
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gain were derived. In the RESTART method a more frequent
occurrence of a formerly rare event is achieved by performing a
number of simulation retrials when the process enters regions of
the state space where the importance is greater, i.e., regions where
the chance of occurrence of the rare event is higher. These
importance regions are defined by comparing the value taken by
a function of the system state, the importance function, with
certain thresholds.

In reliability problems related to mechanics, a technique called
Subset simulation with Splitting was presented in [12]. However,
this technique should be considered a variant of RESTART, which is
also based on the observation that a small failure can be expressed
as a product of larger conditional failure probabilities that can be
estimated with much less computational effort.

The application of RESTART to particular models requires a
suitable importance function to be chosen. An inefficiency factor
related to the importance function was analyzed in [6] and
guidelines for selecting such a function heuristically were pro-
vided. An importance function useful for estimating reliability
measures is provided in [13]. This function is valid for simulating
balanced and some unbalanced systems. Balanced systems are
those whose components have the same redundancy and failure
rates of the same order of magnitude. In this paper we introduce
an importance function that matches a previous one for systems
with the same redundancy, but which is much better for systems
with components of different degrees of redundancy.

One limitation of RESTART methodology in simulating highly
reliable systems with low redundancy is the difficulty of defining
thresholds that are close and for which the probability of reaching
the next threshold is reasonably great and, thus, close to the
optimal. For this reason, [14,15] suggested that this methodology
is not appropriate for this type of system. However, as will be
shown, very low probabilities can be accurately estimated with
reasonable computational effort even for systems with a low level
of redundancy in their components. Unlike importance sampling,
RESTART works better with “significant” redundancies in the
system. In this sense, they can be considered complementary
methods. The advantages of RESTART are that, for Markovian
models, the state space of the CTMC does not have to be finite
(as it does in importance sampling), that the extension to non-
Markovian models is relatively straightforward and that it is not so
dependent on particular features of the system.

Asymptotic optimality with importance sampling has been
studied for cases where the failure rates of the components tend
to zero. In this paper, we will prove the asymptotic optimality of
RESTART estimators in a wide class of models that include the
highly reliable Markovian systems (HRMS) for cases where the
redundancy tends to infinity. Several examples are presented to
show the effectiveness of the approach. Simulation results will be
provided for some Markovian models that have appeared in the
literature and for non-Markovian models with Weibull lifetime
distributions and Erlang repair times.

The paper is organized as follows: Section 2 presents a review
of the method. Section 3 describes a wide class of highly depend-
able systems and gives the importance function. Section 4 pro-
vides the asymptotically optimal analysis. In Section 5 several
application examples are shown and, finally, conclusions are
stated in Section 6.

2. Description of RESTART

This method has been described in detail in several papers, e.g.,
[11,13], and a tutorial on it can be seen in [16]. Nevertheless it is
described here in order to make this paper more self-contained.

LetΩ denote the state space of a process X(t) and A the rare set
whose probability must be estimated. A nested sequence of sets of
states Ci, ðC1*C2*…CMÞ is defined, which determines the parti-
tioning of the state space Ω into regions Ci�Ciþ1; the higher the
value of i, the higher the importance of the region Ci�Ciþ1. These
sets are defined by means of a function, Φ : Ω-ℜ, called the
importance function. Thresholds Ti (1r irM) of Φ are defined so
that each set Ci is associated with ΦZTi.

The rare set probability, P ¼ PrfAg, may be defined as the
probability of the system being in a state of set A at the instant
certain events, denoted reference events, occur. A reference event
at which the system is in a state of the set A is referred to as an
event A. In the examples of Section 5, (component) failure events
are reference events, but not repair events. Two additional events,
Bi and Di, are defined as follows:

Bi: event at which ΦZTi, having been ΦoTi at the
previous event;
Di: event at which ΦoTi, having been ΦZTi at the
previous event.

RESTART works as follows:

� A simulation path, called main trial, is performed in the same
way as if it were a crude simulation. This lasts until it reaches a
predefined “end of simulation” condition.

� Each time an event B1 occurs in the main trial, the system state
is saved, the main trial is interrupted, and R1�1 retrials ½B1;D1Þ
are performed. Each of these retrials is a simulation path that
starts with the state saved at B1 and finishes when an event D1

occurs.
� After the R1�1 retrials ½B1;D1Þ have been performed, the main

trial continues from the state saved at B1. Note that the total
number of simulated paths ½B1;D1Þ, including the portion
½B1;D1Þ of the main trial, is R1. Each of these R1 paths is called
a trial ½B1;D1Þ. The main trial, which continues after D1, leads to
new sets of retrials ½B1;D1Þ if new events B1 occur.

� Events B2 may occur during any trial ½B1;D1Þ. Each time an
event B2 occurs, an analogous process is set in motion: R2�1
retrials ½B2;D2Þ are performed, leading to a total number of R2
trials ½B2;D2Þ. The trial B1;D1½ Þ, which continues after D2, may
lead to new sets of retrials ½B2;D2Þ if new events B2 occur.

� In general, Ri trials ½Bi;DiÞ (1r irM) are performed each time
an event Bi occurs in a trial ½Bi�1;Di�1Þ. The number Ri is
constant for each value of i.

� A retrial that starts at Bi also finishes if it reaches the “end of
simulation” condition before the occurrence of event Di.

Observe that splitting occurs each time a trial crosses a thresh-
old, and trials are killed when they leave the threshold at which
they were born.

Fig. 1 illustrates a RESTART simulation with M¼3, R1¼R2¼4,
R3¼3, in which the chosen importance functionΦ also defines set
A as ΦZL. Bold, thin, dashed and dotted lines are used to
distinguish the main trial and the retrials ½B1;D1Þ, ½B2;D2Þ, and
½B3;D3Þ, respectively.

Note that for the statistics referring to all the trials, the weight
assigned to a trial when it is in the region Ci�Ciþ1 (CM if i¼M)
must be the inverse of the cumulative number of trials,
1=ri ¼ 1=Π i

j ¼ 1Rj (1r irM).
Some more notations:

� P ¼ PrfAg; CMþ1 ¼ A; C0 ¼Ω;
� Ph/i ð0r irhrMþ1Þ: probability of the set Ch at a reference

event, knowing that the system is in a state of the set Ci at that
reference event. For hrM, since Ch � Ci; Ph=i ¼ PrfChg=PrfCig;
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