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a b s t r a c t

In multi-state systems (MSS) reliability problems, it is assumed that the components of each subsystem
have different performance rates with certain probabilities. This leads into extensive computational
efforts involved in using the commonly employed universal generation function (UGF) and the recursive
algorithm to obtain reliability of systems consisting of a large number of components. This research deals
with evaluating non-repairable three-state systems reliability and proposes a novel method based on a
Markov process for which an appropriate state definition is provided. It is shown that solving the derived
differential equations significantly reduces the computational time compared to the UGF and the
recursive algorithm.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the classical system reliability viewpoint, systems are binary-
state, in which the components have two states of “working
perfect” or “completely failed. “Whereas according to newer
approaches, a typical component of a system may work at any
performance rate between 0% and 100%, each with a certain
probability. These systems that are called multi-state (MSS) have
been studied in depth by many researchers such as Lisnianski and
Levitin [12] and Tian et al. [17]. While the binary-state system
reliability can be obtained through the basic mathematical and
statistical relations, most of the research works in MSS reliability
problem focus on optimizing the level of a unique system
redundancy [12].

System reliability determination of MSSs is extremely hard
using mathematical relations (if not possible), because the system
states increase rapidly and computational complexity gets high. As
an alternative, Ushakov [18] proposed the universal generation
function (UGF) approach for the first time. UGF is known as an
appropriate method for calculating the reliability and availability
of multi-state systems. This method incredibly decreases the

number of system state evaluations and makes the system
reliability and availability computations easier [1]. Later, Gnedenko
and Ushakov [2], Ushakov [19], and Lisnianski and Levitin [12]
introduced more applications of the UGF method. Lisnianski et al.
[13] utilized UGF to evaluate the reliability of a MSS containing
serial, parallel, and series–parallel sub-systems. Ding and Lis-
nianski [1] showed that the output probability distribution for
the entire MSS could be determined by UGF. Moreover, Levitin
et al. [5], Levitin and Lisniaski [6,7], and Lisnianski et al. [11]
calculated the distribution function of MSSs with series, parallel,
and bridge structures by combination of different operators.
Further, Levitin et al. [5] presented a redundancy optimization
algorithm for a MSS with series–parallel structure using UGF. Kuo
and Wan [4] discussed the optimal reliability design in which UGF
was employed as the main method in appraising multi-state
systems reliability evaluation. Besides, UGF was applied in redun-
dancy allocation problems (RAP) and k-out-of-n systems many
times (see for example Tian et al. [17], Lisnianski and Levitin, [12],
Ouzineb et al. [16]).

Although UGF is known as a convenient method in order to
calculate MSS reliability, because it can evaluate reliability of
multi-state systems with series, parallel, series–parallel, and
bridge structures ([5–7,11]), but when the number of components
in the system increases the required CPU time dramatically
increases. This is the main pitfall for which some solutions have
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been proposed in the literature. Wu and Chen [20] offered a
recursive algorithm in order to evaluate the reliability of a binary
weighted k-out-of-n system. Higashiyama [3] proposed a proce-
dure in order to evaluate the system reliability of a binary
weighted k-out-of-n system in fewer time in comparison with
the proposed method by Wu and Chen [20]. However, the time
and the space complexities of these two methods are similar to the
ones of a recursive algorithm proposed by Li and Zuo [10], which is
another useful method to evaluate system availability of binary
weighted k-out-of-n:G as well as multi-state weighted k-out-of-n:
G systems with less required CPU time. Nevertheless, this method
cannot be used when the number of components gets large.

In this paper, a novel and effective approach is aimed to calculate
system reliability of non-repairable three-state systems by first defin-
ing an appropriate system state. Then, using a Markov process and
utilizing the Chapman–Kolmogorov theorem [15], differential equa-
tions are obtained. We show that solving these differential equations,
which leads into state probabilities and consequently the system
reliability, requires much less CPU time and provides solutions with
the same quality compared to the ones obtained by either UGF or the
recursive algorithm. To do this, a brief background on the UGF method
is first presented in Section 2. Then, the recursive algorithm is
described briefly in Section 3. Next, the problem is defined, the
proposed Markov process to model the problem is introduced, and
the differential equations are derived in Section 4. Section 5 concerns
with evaluating and comparing the performances of the proposed
method. Conclusion and recommendations for future research come
in Section 6.

2. The universal generation function (UGF)

In order to describe the UGF method, consider a system having
n components, where components j; j¼ 1;2; :::;n; may have kj
different states with certain probabilities of performance rates
denoted by an ordering set gj ¼ fgj1; gj2; :::; gjkj g in which gjij repre-
sents the performance rate of component j in state ijAf1;2; :::; kjg.
The performance rate GjðtÞ of component j at time tZ0 is a
random variable taking values in gj : GjðtÞAgj. Moreover, let the
probabilities associated with different states of component j be
the set Pj ¼ fpj1; pj2; :::;pjkj g [12]. Furthermore, gjij-Pj is often called
the probability mass function (pmf) [9,1].

As soon as the performance rates of the components are given, the
performance rate of a MSS can be determined. Let the system have K
different states and gi be the performance rate of the system in state
i; i¼ 1;2; :::;K . Then, the system performance rate at time tZ0 will
be either a random variable or a random vector that takes values in
fg1; :::gi; :::; gKg. Thus, the space representing all possible combinations
of performance rates for all components is Ln ¼ fg11; :::; g1k1 g �⋯�
fgj1; :::; gjkj g �⋯� fgn1; :::; gnkn g and the space for all possible values of
the entire system performance rates is M¼ fg1; :::; gK g. The transfor-
mation ϕ G1ðtÞ:::GnðtÞð Þ : Ln-M that maps the space of performance
rates of system components into the space of system performance
rates is called the system structure function [12]. Moreover, the total
number of possible states (performance rates) of a MSS is

K ¼ ∏
n

j ¼ 1
kj ð1Þ

Besides, the probability associated with the state i of the system can be
obtained as

Pi ¼ ∏
n

j ¼ 1
pjij ð2Þ

Denoting the MSS performance rate for state i as

gi ¼ ϕðg1i1 ; g2i2 ; :::; gnin Þ ð3Þ

The probability distribution of the whole system for K combi-
nations of i1; i2; :::; in is

gi ¼ ϕðg1i1 ; g2i2 ; :::; gnin Þ; Pi ¼ ∏
n

j ¼ 1
pjij ð4Þ

where 1r ijrkj; ð1r jrnÞ.
The z-transform of a random variable GjðtÞ represents its pmf

with pj ¼ fpj1; pj2; :::; pjkj g associated with gj ¼ fgj1; gj2; :::; gjkj g [12,9].
Eq. (5) shows the probability distribution of the component j,
called also individual UGF.

uðzÞ ¼ ∑
kj

i ¼ 1
pjij z

gjij ð5Þ

To derive the probability distribution of the entire MSS with an
arbitrary structure function ϕ, a general composition operator Ωϕ

is employed on individual UGF of n components as [12]:

UðzÞ ¼Ωϕfu1ðzÞ; :::;unðzÞg ¼Ωϕ ∑
k1

i1 ¼ 1
p1i1z

g1i1 ; :::; ∑
kn

in ¼ 1
pnin z

gnin

( )

¼ ∑
k1

i1

∑
k2

i2

:::∑
kn

in

∏
n

j ¼ 1
pjij z

ϕðg1i1 ;:::;gnin Þ
 !

ð6Þ

Based on the relationship between MSS performance and the demand
level ω that is often determined outside the system, the state space of
a MSS can be divided into two subsets: acceptable and unacceptable.
The relationship usually is determined by the system state adequacy
index ri defined by ri ¼ gi�ω. As a result, state i is acceptable if riZ0.
The availability of a MSS (reliability of a non-repairable MSS) is defined
as the probability the system staying in the subset of acceptable states.
Thus, based on the demand level ω the availability of a MSS, AðωÞ, is
usually defined as the probability the MSS performance rate is greater
than ω [12]. In other words,

AðωÞ ¼ ∑
ri Z0

pi ð7Þ

Then, using operator δA it becomes

AðωÞ ¼ δAðUðzÞ; ωÞ ¼ δA ∑
K

i ¼ 1
piz

gi ; ω

 !
¼ ∑

K

i ¼ 1
piαi

where

αi ¼
1; riZ0
0; rio0:

( ð8Þ

In Eq. (8) δA is known as UGF operator. This operator determines the
polynomial UGF for a group of components first connected in parallel
in a subsystem and then for a group of subsystems in series using
simple algebraic operations on the individual UGF of components. In
some cases, composition operators can be developed for structures
with more complex system structure, such as bridges, as shown by
Levitin and Lisnianski [8].

3. The recursive algorithm

Li and Zuo [10] presented a recursive algorithm in order to
evaluate reliability of multi-state weighted k-out-of-n:G systems.
In this type of systems, each component is classified to work in
different states and the system is working until sum of the weight
of the safe components is at least k. Li and Zuo [10] showed that
their method is capable to calculate system reliability in less CPU
time compared to UGF.

The notations used in Li and Zuo [10] in their method are:

n: The number of components in each system.
M: The highest possible state of each component and system.
wij: The weight of component i when it is in state j.

P. Pourkarim Guilani et al. / Reliability Engineering and System Safety 129 (2014) 29–3530



Download	English	Version:

https://daneshyari.com/en/article/807941

Download	Persian	Version:

https://daneshyari.com/article/807941

Daneshyari.com

https://daneshyari.com/en/article/807941
https://daneshyari.com/article/807941
https://daneshyari.com/

