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a b s t r a c t

This paper deals with the issue of building a parametric model from the empirical and/or qualitative
information about the hazard rate. We propose a new class of models for survival data analysis. This class
is characterized by a distribution function which includes, in its expression, a function that defines the
sign of the first derivative of a monotonic transformation of the hazard rate. We show that certain
parametric models used in survival analysis belong to the proposed class. Finally, by using the proposed
method, we build two new distributions which allow us to achieve a highly flexible hazard rate. The first
one is based on an m-degree polynomial and allows us to get BT, IFR and UBT-BT hazard rates, while the
second, based on trigonometric functions, enables us to obtain monotonically increasing or decreasing
hazard rates or hazard rates with a non-monotonic behavior. The usefulness of the new method is
illustrated through two applications to real data.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In different fields of applications the main focus of researchers is
on the so-called time-to-event, i.e. the time taken for an event to
occur. Certainly, in simple cases the event is the death of human
beings, animals, cells, plants, etc. and the time of death is studied in
demography, biology, botany, etc. Moreover, it is also very impor-
tant in economic and social studies, for example, to have informa-
tion about the required time to acceptance of a job offer for an
unemployed person; in industrial applications, information about
the lifetime of a unit or some component in a unit is necessary to
assess the reliability of a system. The statistical studies dealing with
these problems are classified, according to the field of application,
as survival analysis, lifetime data analysis, reliability analysis,
duration analysis and so on. In this paper, we propose a new class
of models for the analysis of these kinds of data.

Let T be a non-negative random variable (rv), usually represent-
ing the lifetime of an individual or unit, with distribution function
(df), survival function (sf) and probability density function (pdf),
respectively, denoted by Fðt;θÞ, Sðt;θÞ ¼ 1�Fðt;θÞ and f ðt;θÞ, where
θAΘ�Rp with pZ1 and pAN. Moreover, let f ðt;θÞ be continuous
and twice differentiable on ð0;1Þ. One important function in
survival analysis is the hazard rate (or failure rate) defined as

hðt;θÞ ¼ lim
Δt-0

P½trTotþΔtjT4t�
Δt

¼ f ðt;θÞ
Sðt;θÞ: ð1Þ

That is, hðt;θÞ �Δt can be thought of as the conditional probability
that an event occurs in the interval ½t; tþΔtÞ given that the event
has not occurred before time t.

In the literature, it is usual to denote the strictly increasing
(decreasing) failure rate as IFR (DFR) and the hazard rate with a
minimum or a maximum as Bathtub (BT) and Upside-down Bathtub
(UBT), respectively. It is worth noting that in the continuous case
the function in (1) is not a density function, since hðt;θÞZ0 andR1
0 hðt;θÞ dt ¼1 (see [1, p. 7; 2, p. 9]). For a proper model,
the condition

R1
0 hðt;θÞ dt ¼1 implies that limt-1Fðt;θÞ ¼ 1. We

highlight the fact that, in the literature on duration data, situations
where the event of interest never takes place are provided, so that
limt-1Fðt;θÞ ¼ k, with ko1. As a consequence,

R1
0 hðt;θÞ dt does

not diverge. Such models are called defective or subprobability
models [3, p. 9; 4].

In survival analysis, the choice of a parametric model is often
based on theoretical arguments dealing with the failure mechanism
or aging properties [5] and/or on empirical analysis such as, for
example, the total time on test (TTT) plot [6] or even on the
empirical hazard rate to appraise the shape of the hazard rate. The
linkage between probability density function and hazard rate
expressed by

f ðt;θÞ ¼ hðt;θÞ exp �
Z t

0
hðu;θÞ du

� �
ð2Þ

provides a tool for constructing a new pdf that corresponds to a
hazard profile observed in the data. Thus, it is possible to develop a
model by means of the hazard rate and determine later the
distribution function linked to the hazard rate.
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Over the past 30 years, a considerable part of the literature
related to the building and specification of models for survival data
has been directed towards the search for hazard rate with a
bathtub shape. Among others, we recall the article by Glaser [7]
who proposes a procedure to analyze the behavior of a particularly
complex hazard rate, based on the reciprocal of hðt;θÞ. For a
detailed review of the literature on this topic, see the work of
Rajarshi S. and Rajarshi M.B. [8].

In the last two decades different models with a bathtub-shaped
failure rate have been proposed. Some of these are based on the
sum of two Weibull [9], or on the sum of two Burr XII random
variables [10], or also on the sum of two inverse Weibull [11].
Others are based on particular generalizations of the Weibull
random variables [12,13], or on transformations of the total time
on test [14]; in this context, we remember the work of Chen [15]
and Wang et al. [16]. Models with highly flexible hazard rate (IFR,
DFR, UBT, BT) are found in the works of Mudholkar et al. [17,18]
and Saha and Hilton [19]. More recently, a new generalization of
the Weibull distribution has been proposed in order to get bathtub
shaped failure rates (for a review see [20]). In this context Cordeiro
et al. [21] introduce the beta extended Weibull family by using the
beta generated distribution method. Such a method has been used
by different authors also to achieve a more flexible hazard rate
(see, for example, [22–24]). Finally, it is worth noting that Slymen
and Lachembruch [25], and Louzado-Neto [26,27], Louzado-Neto
et al. [28] and Bebbington et al. [29] discuss the issue of multi-
modality of the hazard function.

In this paper, we propose a new class of distribution functions
for modeling survival data, based on a transformation of the
hazard rate. This class is very flexible because it contains a
function, φð�Þ, that determines the sign of the derivate of the
hazard rate (Section 2). In Section 3, some parametric models are
reported as special cases of the proposed class. Starting from the
proposed method, in Section 4 we construct and study two new
parametric models, which provide a highly flexible hazard rate.

2. A new class of distribution functions

In the literature there are different systems of statistical distribu-
tions based on the specification of a differential equation. Certainly,
the most widely known is the Pearson system in which every
member has a density function f ðt;θÞ which satisfies the differential
equation f 0ðt;θÞ=f ðt;θÞ ¼ ðt�mÞ=ðat2þbtþcÞ, wherem, a, b and c are
constants determining a particular type of solution. Unlike the
Pearson system, the differential equation specified by Burr [40]
describes the distribution function and not the density function; in
particular, the df's of all Burr distributions satisfy the following
differential equation: F 0ðt;θÞ ¼ Fðt;θÞ½1�Fðt;θÞ�gðt;θÞ, where gð�Þ is
a suitable nonnegative function. Several authors specify the differ-
ential equation so as to reproduce the characteristics of regularity
observed in a given field of inquiry (see, for example, [30–33]); the
functional form of distribution function (or density function) is the
solution of the corresponding differential equation. In this section,
we propose a new class of distribution functionwhich turns out to be
a solution of the following differential equation:

y″ðtÞ ¼ αy0ðtÞφðtÞ ð3Þ
where α is a positive constant and φð�Þ is a real-valued function of t.
Rearranging (3) we get

y″ðtÞ
y0ðtÞ ¼ αφðtÞ: ð4Þ

Integrating twice w.r.t. t, the set of solutions of the differential
equation defined in (3) is given by

yðtÞ ¼ c2þec1
Z

eα
R
φðtÞ dt dt

where c1 and c2 are two constants of integration. Putting yðtÞ ¼
� ln½Sðt;θÞ�, after simple algebra, we obtain the following particular
solution:

Fðt;θÞ ¼ 1�k2 exp �k1

Z
eα
R
φðt;γÞ dt dt

� �
ð5Þ

with k1 ¼ ec1 and k2 ¼ e� c2 , and θ¼ ðα; k1; k2; γÞ. The probability
density function corresponding to (5) is given by

f ðt;θÞ ¼ k1 � k2 exp α
Z
φðt; γÞ dt

� �

�exp �k1

Z
exp α

Z
φðt; γÞ dt

� �
dt

� �
: ð6Þ

It is useful to note that yðtÞ ¼ � ln½Sðt;θÞ� is the integrated hazard
rate, y0ðtÞ ¼ hðt;θÞ is the hazard rate and y″ðtÞ ¼ h0ðt;θÞ is the first
derivate w.r.t. t of the hazard rate. This allows us to clarify the role of
function φðt; γÞ; in fact, the sign of φð�; �Þ in (3), when yðtÞ ¼
� ln½Sðt;θÞ�, determines the sign of the first derivative of the hazard
rate, i.e. y″ðtÞ and therefore, defines the behavior of the hazard rate.
In particular, if we choose a positive (negative) function, φðt; γÞ, for all
t, then we obtain an increasing (decreasing) hazard rate. While, if we
choose a function such that for any tA ð0; tnÞ, φðt; γÞ40, φðtn; γÞ ¼ 0
and for t4tn, φðt; γÞo0 then from (3) the hazard rate will be UBT.
Similarly, to construct a BT hazard rate, we must choose a function
such that for any tAð0; tnÞ, φðt; γÞo0, φðtn; γÞ ¼ 0 and for t4tn,
φðt; γÞ40. Ultimately, we can conclude that the function φðt; γÞ,
from Eq. (5) provides a mathematically equivalent way of specifying
the distribution function of a continuous nonnegative random
variable.

Remark. In a different context, when y(t) is an increasing function,
the left side of equation (4) defines the Arrow–Pratt coefficient of
absolute risk aversion, so that function yðtÞ ¼ � ln½Sðt;θÞ� can be
thought of as a utility function. Consequently, the sign of φðt; γÞ
determines the shape of the utility function. So, for example, if φðt; γÞ
is negative (positive) for all t, then the utility function is concave
(convex), if φðt; γÞ4 ðo Þ0 for tA ð0; tnÞ, φðtn; γÞ ¼ 0 and for t4tn,
φðt; γÞo ð4 Þ0 then the utility function is S-shaped (reversed
S-shaped); for the non-canonical shape of utility function see, for
example, [34–36]. From the aforesaid, Eq. (4) provides a link between
the behavior of the utility function and the behavior of the hazard rate.

Moreover, we highlight the fact that in demographic studies
the left side of Eq. (4) is called age-specific rate of mortality change
with age [37].

2.1. Properties of the new class of distributions

In this section, we show that some characteristics and struc-
tural properties of the new class of distribution functions depend
on the behavior of function φðt; γÞ. The results of this section show
that function φðt; γÞ not only determines the behavior of the
hazard rate and allows us to build new distribution functions
but also affects certain properties of the new distribution
functions.

First of all, we remark that function φðt; γÞ is a transformation
of the hazard rate. Indeed, given that yðtÞ ¼ � ln½Sðt;θÞ�, from
relations (1) and (3), we have

φðt; γÞ ¼ 1
α
y″ðtÞ
y0ðtÞ ¼

1
α
∂ ln½hðt;θÞ�

∂t
:

Consequently, we can write the exponent of (5) as �k1
R
hðt;θÞ dt

and recalling the following relations:Z t

0
hðu;θÞ du¼

Z t

0

�∂Sðu;θÞ
∂u

� 1
Sðu;θÞ du¼ � ln½Sðu;θÞ�t0 ¼ � ln½Sðt;θÞ�;
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