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a b s t r a c t

Apart from parametric uncertainty, model form uncertainty as well as prediction error may be involved
in the analysis of engineering system. Model form uncertainty, inherently existing in selecting the best
approximation from a model set cannot be ignored, especially when the predictions by competing
models show significant differences. In this research, a methodology based on maximum likelihood
estimation is presented to quantify model form uncertainty using the measured differences of
experimental and model outcomes, and is compared with a fully Bayesian estimation to demonstrate
its effectiveness. While a method called the adjustment factor approach is utilized to propagate model
form uncertainty alone into the prediction of a system response, a method called model averaging is
utilized to incorporate both model form uncertainty and prediction error into it. A numerical problem of
concrete creep is used to demonstrate the processes for quantifying model form uncertainty and
implementing the adjustment factor approach and model averaging. Finally, the presented methodology
is applied to characterize the engineering benefits of a laser peening process.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Structural analysis of complex physical phenomena is becom-
ing more dependent on computer simulation as nonlinear model-
ing methods advance. A simulation model can vary depending on
the underlying physics and engineering and the manner in which
a mathematical model is converted into a simulation model. This
implies that we may have two or more different simulation
models to analyze an identical engineering system. In statistics, a
variety of model selection criteria have been developed from
different perspectives with the aim to select the best model from
a plausible regression model set such as Akaike Information
Criterion (AIC) [1], Bayesian Information Criterion (BIC) [2], Mal-
lows' Cp [3] and minimum description length [4]. Generally,
a statistical model selection process is implemented with the
concept that the best model balance goodness of fit with simpli-
city (usually measured by counting the number of regression
parameters) better than the other considered models.

In general, uncertainty exists in the process of selecting the
best model from a model set. Uncertainty involved in model
selection, called model form uncertainty in this paper because of

its existence in model form, is due to lack of confidence in
selecting the best model. Ignoring model form uncertainty is
problematic because it may lead to underestimating the variability
of predictions or making erroneous predictions [5].

It has been argued that a simple way to account for model form
uncertainty is by model combination which takes all the predic-
tions by a model set into account (detailed in Section 3) [6]. Model
combination produces predictions that incorporate the (epistemic)
variation inherent in the statistical model selection process as well
as the (aleatory and/or epistemic) variation conditional on each
model. Model combination aims to predict unknown responses
more reliably than each model in a set rather than better represent
the physics of a real system or update predictions of each model
given measured experimental data. The model selection criteria to
select the best model from a plausible regression model set can be
adapted to the task of model combination. Unlike the statistical
regression models that fit observed experimental data, mathema-
tical or simulation models used in the engineering field (specifi-
cally functional forms in the models) are fundamentally created
based on scientific and engineering knowledge. Some of analytical
models such as semi-empirical models have their functional forms
derived from both theoretical knowledge and empirical data.

Recently, an increasing number of papers on the model form
uncertainty quantification have been published in the engineering
field while there exists plenty of literature on the big topic of V &
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V, which broadly covers the model form UQ [7,8]. Alvin et al. [9]
used BMA to estimate the model form uncertainty in the fre-
quency prediction of a component mounting bracket resulting
from the use of three stochastic simulation models having the
parametric uncertainty in elastic material modulus. The three
simulation models had different levels of simplifying assumptions
in their PDE forms, as well as different spatial meshes and
different discrete solution variables. Model probability, which is
assigned to each model to quantify model form uncertainty (the
detailed description of model probability is given in Section 2.1),
was simply assumed to be uniformly distributed over the con-
sidered simulation models. Zio and Apostolakis [10] used the
adjustment factor approach—which is being described in Section
3.2—to estimate the model form uncertainty in the response
predictions regarding the cumulative release of a radionuclide to
water table given by six different models. The six models differ by
some fundamental hypotheses on the groundwater flow and
transport mechnisms. Model probabilities were evaluated based
on expert opinions. Zhang and Mahadevan [11] estimated the
failure probabilities for the butt welds of a steel bridge using two
competing crack growth models (the Foreman and the Weertman
crack growth models). They made a reliability analysis of fatigue
life by averaging the estimated failure probabilities weighted by
the probabilities of the crack models. The uncertainty in crack size
measurement was quantified to evaluate model probabilities using
Bayes’ theorem.

Zouaoui and Wilson [12] used BMA to quantify the model form
uncertainty in prediction of a system response (a message delay
in a computer communication network). Although simulation
models were used to predict a message delay, model probabilities
were not assigned to the simulation models but to three different
types of distributions that represent the uncertainty in an input
variable (i.e. a message length). The distributions for a message
length were assumed to be of exponential, normal and lognormal
forms. McFarland and Bichon [13] used BMA to incorporate
probability distribution model form uncertainty into the estima-
tion of failure probability of a bistable MEMS device. As in the
work of Zouaoui and Wilson, model probabilities were assigned to
the three types of distributions (normal, lognormal and Weibull)
that represent the uncertainty in an input variable (i.e. edge bias
on beam widths).

In the above-mentioned research, evaluating model probability
did not rely on a statistical analysis of the degree of agreement
between the physically observed data on system responses and
the simulated model predictions of the data. In recent years,
attention of researchers also in the engineering field has increas-
ingly been drawn to the statistical evaluation of the discrepancies
between the test and the simulated data for the model probability
quantification. To evaluate model probability using the measured
differences of physically observed and simulated data in a practical
and effective way, Park et al. [14] developed a statistical approach
(detailed in Section 2) based on the fundamental idea behind BIC.
The variance in prediction errors of each model is estimated using
the Maximum Likelihood Estimation (MLE), and the best point
estimate of the variance plays a critical role in the quantification of
model probability. However, the composite prediction that only
incorporates model form uncertainty was shown to underestimate
the uncertainty in response predictions.

The present research accounts for both model form uncertainty
and (unknown) prediction error involved in each model to obtain
highly reliable prediction of a system response. The two types of
uncertainties are merged into response prediction using a model
combination technique called model averaging.

The MLE based method for quantifying model form uncertainty
is presented with a fully Bayesian estimation for doing it in Section
2. Two model combination methods, model averaging and the

adjustment factor approach, are described and compared in
Section 3. In Section 4.1, the presented uncertainty quantification
method and the model combination methods are illustrated with a
numerical problem of concrete creep. Model form uncertainty and
prediction errors associated with the FE analysis of a laser peening
process are quantified and are incorporated into composite pre-
diction in Section 4.2.

2. Quantification of model probability

2.1. Bayes' theorem for quantification of model probability

Model probability is defined as the degree of belief that a
model is the best approximation among a set of possibilities; here,
the best approximating model is defined as the model that
predicts system responses of interest, usually unknown, more
accurately than the other models in a model set. Consider a set
of models denoted by M1, M2, …, MK and experimental data D.
Given experimental data D, Bayes' theorem presents a way to
update prior probability of model Mk into posterior probability of
Mk by

PrðMkjDÞ ¼
PrðMkÞ � LðMkjDÞ

∑
K

l ¼ 1
PrðMlÞ � LðMljDÞ

; k¼ 1;…;K ð1Þ

Pr(Mk) is prior probability of model Mk, the degree of belief that
model Mk is the best approximation assessed prior to observing
experimental data D. Zio and Apostolakis investigated the formal
process of eliciting and interpreting expert judgments to quantify
prior model probability Pr(Mk) [10]. The quantification of Pr(Mk)
using a corpus of knowledge is arbitrary in nature because
logically rigorous relations do not exist between the knowledge
about a model set and prior model probability. Prior model
probability Pr(Mk) is often given a uniform value to avoid the
difficulty of numerically specifying prior knowledge. L(Mk|D) is
called the likelihood of model Mk given experimental data D. L(Mk|
D) is deeply related to the goodness of fit of model Mk to
experimental data D relative to the other models in the model
set. Since uniform prior model probability is assumed for this
research, the only concern is the evaluation of model likelihood L
(Mk|D). A methodology to evaluate model likelihood given experi-
mental data is presented in Section 2.2.

2.2. Evaluation of model likelihood

2.2.1. Unknown prediction error
Because a (mathematical or simulation) model is just an

approximation to a real physical system, it unavoidably involves
an error in its prediction of a response; here prediction error is the
difference between model prediction and experimental data. A
prediction error is unknown unless the corresponding response is
measured from the considered physical system. Probability dis-
tribution is generally used to describe an unknown prediction
error; more specifically, (aleatory and epistemic) uncertainty in
prediction error is mathematically characterized by a probability
distribution. In statistics, prediction errors are usually assumed to
be normally distributed with zero mean and a constant variance
[15]. It is often stated that all variations in observed experimental
data that cannot be explained by the considered model are
included in the error term [16]. The statistical theory for dealing
with random prediction error is well-understood and allows for
constructing easily interpretable statistical intervals for predic-
tions. However, this way of describing prediction error does not
accommodate any framework to discern between the sources
causing prediction error.
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