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a b s t r a c t

In this letter, energy transfer of Jeffery–Hamel nanofluid flow in non-parallel walls is investigated
analytically using Galerkin method. The effective thermal conductivity and viscosity of nanofluid are
calculated by the Maxwell–Garnetts (MG) and Brinkman models, respectively. The influence of the
nanofluid volume friction, Reynolds number and angle of the channel on velocity and temperature profiles
are investigated. Results show that Nusselt number increases with increase of Reynolds number and
nanoparticle volume friction. Also it can be found that skin friction coefficient is an increasing function of
Reynolds number, opening angle and nanoparticle volume friction.

© 2018 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nanotechnology suggests newkindofworking fluidwithhigher
thermal conductivity. Nanofluid can be used in various field of
engineering. Fluid heating and cooling are important in many
industries fields such as power, manufacturing and transportation.
Effective cooling techniques are absolutely needed for cooling any
sort of high energy device. Common heat transfer fluids such as
water, ethylene glycol, and engine oil have limited heat transfer
capabilities due to their low heat transfer properties. In contrast,
metals thermal conductivities are up to three times higher than the
fluids, so it is naturally desirable to combine the two substances to
produce a heat transfer medium that behaves like a fluid, but has
the thermal conductivity of a metal. Zin et al. (2017) investigated
Jeffrey nanofluid free convection in a porousmedia under the effect
ofmagnetic field. Abro and Khan (2017) investigated flow and heat
transfer of Casson fluid in a porous medium. Sheikholeslami et
al. (2018a) utilized nanoparticles for condensation process. They
analyzed entropy generation and exergy loss of nano-refrigerant.
Ullah et al. (2017) investigated slip effect on Casson fluid flow over
a porous plate in existence of Lorentz forces. Sheikholeslami et
al. (2018f) investigated exergy loss analysis for nanofluid forced
convectionheat transfer in a pipewithmodified turbulators. Sheik-
holeslami et al. (2018d) presented nanofluid forced convection
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turbulent flow in a pipe. Sheikholeslami et al. (2018g) studied the
nanofluid natural convection in a porous cubic cavity by means
of Lattice Boltzmann method. Sheikholeslami (2018e) simulated
solidification process of nano-enhanced PCM in a thermal energy
storage.

There are some simple and accurate approximation techniques
for solving differential equations called the Weighted Residu-
als Methods (WRMs). Collocation, Galerkin and Least Square are
examples of the WRMs. Hosseini et al. (2018) utilized Galerkin
method to investigated Nanofluid heat transfer analysis in a mi-
crochannel heat sink (MCHS) under the effect of magnetic field.
Vaferi et al. (2012) have studied the feasibility of applying of
Orthogonal Collocation method to solve diffusivity equation in the
radial transient flow system. Hendi and Albugami (2010) used
Collocation and Galerkin methods for solving Fredholm–Volterra
integral equation. Recently Least square method is introduced by
A. Aziz and M.N. Bouaziz (Bouaziz and Aziz, 2010) and is applied
for a predicting the performance of a longitudinal fin Aziz and
Bouaziz (2011). They found that least squares method is simple
compared with other analytical methods. Shaoqin and Huoyuan
(2008) developed and analyzed least-squares approximations for
the incompressible magneto-hydrodynamic equations.

After introducing the problem of the flow of fluid through a di-
vergent channel by Jeffery (Sheikholeslami et al., 2018f) andHamel
(1916) in 1915 and 1916, respectively, it is called Jeffery–Hamel
flow. On the other hand, the term of Magneto hydro dynamic
(MHD) was first introduced by Alfvén (Bansal, 1994) in 1970. The

https://doi.org/10.1016/j.egyr.2018.05.003
2352-4847/© 2018 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.egyr.2018.05.003
http://www.elsevier.com/locate/egyr
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2018.05.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ilyaskhan@tdt.edu.vn
https://doi.org/10.1016/j.egyr.2018.05.003
http://creativecommons.org/licenses/by-nc-nd/4.0/


394 Z. Li et al. / Energy Reports 4 (2018) 393–399

Nomenclature

A∗ Constant parameter
B0 Magnetic field(wb.m−2)
f (η) Dimensionless velocity
Pressure term Pressure term
Re Reynolds number
r, θ Cylindrical coordinates
Umax Maximum value of velocity
u, v Velocity components along x, y axes, respectively

Greek symbols

α Angle of the channel
η Dimensionless angle
θ Any angle
ρ Density
φ Nanoparticle volume fraction
µ Dynamic viscosity
υ Kinematic viscosity

Subscripts

∞ Condition at infinity
Nanofluid nf
Base fluid f
s Nano-solid-particles

theory of Magneto hydro dynamics is inducing current in amoving
conductive fluid in presence of magnetic field; such induced cur-
rent results force on ions of the conductive fluid. The theoretical
study of (MHD) channel has been a subject of great interest due to
its extensive applications in designing cooling systems with liquid
metals,MHDgenerators, accelerators, pumps and flowmeters (Cha
et al., 2002). In recent years, nanofluid has been used in various
fields (Sheikholeslami and Shehzad, 2018a; Sheikholeslami et al.,
2018b; Sheikholeslami and Rokni, 2018c, a; Sheikholeslami and
Shehzad, 2018c; Chamkha et al., 2010;Mansour et al., 2010; Sheik-
holeslami and Seyednezhad, 2018; Sheikholeslami et al., 2018e;
Sheikholeslami, 2018c, a; Chamkha and Ahmed, 2011; Raju and
Sandeep, 2016; Sheikholeslami and Rokni, 2018b; Sheikholeslami,
2018b; Sheikholeslami and Shehzad, 2018b; Ali et al., 2016a, b,
2017; Imran et al., 2017; Jafaryar et al., 2018; Sheikholeslami,
2018d; Sheikholeslami et al., 2018c; Sheikholeslami and Sadoughi,
2018; Sheikholeslami and Rokni, 2017b; Fengrui et al., 2017a, b;
Sheikholeslami and Seyednezhad, 2017a; Sheikholeslami et al.,
2017; Sheikholeslami and Shehzad, 2017a; Sheikholeslami and
Rokni, 2017c; Sheikholeslami, 2017c; Sheikholeslami and Shehzad,
2017b; Sheikholeslami and Sadoughi, 2017; Sheikholeslami and
Zeeshan, 2017; Sheikholeslami, 2017b; Ahmed et al., 2017; Khan et
al., 2017; Sheikholeslami and Bhatti, 2017; Sheikholeslami, 2017a;
Sheikholeslami and Seyednezhad, 2017b; Shah et al., 2018; Sheik-
holeslami and Rokni, 2017a; Sheikholeslami and Ghasemi, 2018).

In this study, the purpose is to solve nonlinear equations
through the GM. The effect of active parameters such as nanopar-
ticle volume friction, opening angle and Reynolds number on
velocity and temperature boundary layer thicknesses have been
examined.

2. Problem description

Consider a system of cylindrical polar coordinates (r, z, θ )
which steady two-dimensional flow of an incompressible conduct-
ing viscous fluid from a source or sink at channelwalls lie in planes,

and intersect in the axis of z. Assuming purely radial motion which
means that there is no change in the flow parameter along the z
direction. The flow depends on r and θ (see Fig. 1).

The reduced forms of continuity, Navier–Stokes and energy
equations are (Sheikholeslami et al., 2012):
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Where, ur is the velocity along radial direction, P is the fluid
pressure,υn f the coefficient of kinematic viscosity andρn f the fluid
density. The effective density ρn f , the effective dynamic viscosity
µn f and kinematic viscosity υn f of the nanofluid are given as:

ρn f = ρf (1 − φ) + ρsφ, µn f =
µf

(1 − φ)2.5
,

υn f =
µf

ρnf
,

knf
kf

=
(ks + 2kf ) − 2φ(ks − kf )
(ks + 2kf ) + φ(ks − kf )

(5)

Here, φ is the solid volume fraction. Considering uθ = 0 for
purely radial flow, one can define the velocity parameter as:

f (θ ) = rur (6)

Introducing the η =
θ
α
as the dimensionless degree, the dimen-

sionless form of the velocity parameter can be obtained by dividing
that to its maximum value as:

F (η) =
f (θ )
uc
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α
, (7)

Substituting Eq. (6) into Eqs. (2) and (3), and eliminating P, one
can obtain the ordinary differential equation for the normalized
function profile as:
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Where Re is Reynolds number, Pr is Prandtl number and Ec is
the Eckert number. On introducing the following non-dimensional
quantities,

Re =
fmaxα

υf
=

Umaxrα
υf

×

(
divergent − channel : α > 0, fmax > 0
convergent − channel : α < 0, fmax < 0

)
(10)
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