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This paper presents an efficient analytical Bayesian method for reliability and system response

updating without using simulations. The method includes additional information such as measurement

data via Bayesian modeling to reduce estimation uncertainties. Laplace approximation method is used

to evaluate Bayesian posterior distributions analytically. An efficient algorithm based on inverse first-

order reliability method is developed to evaluate system responses given a reliability index or

confidence interval. Since the proposed method involves no simulations such as Monte Carlo or

Markov chain Monte Carlo simulations, the overall computational efficiency improves significantly,

particularly for problems with complicated performance functions. A practical fatigue crack propaga-

tion problem with experimental data, and a structural scale example are presented for methodology

demonstration. The accuracy and computational efficiency of the proposed method are compared with

traditional simulation-based methods.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Probabilistic inference for system reliability and responses has
drawn extensive attentions due to the increasing complexity of
modern engineering structures [1,2]. For high reliability demand-
ing systems such as aircraft and nuclear facilities, time-dependent
reliability degradation and performance prognostics must be
quantified in order to prevent system failures. Reliable predic-
tions of system reliability and system responses are usually
required for decision-making in a time and computational
resource constrained situation. The central idea of time-indepen-
dent component reliability analysis involves computation of a
multi-dimensional integral over the failure domain of the perfor-
mance function [3–5]. For problems with high-dimensional para-
meters, the exact evaluation of this integral is either analytically
intractable or computationally infeasible with a given time con-
straint. Analytical approximations and numerical simulations are
two major computational methods to solve this problem [6].

The simulation-based method includes direct Monte Carlo (MC)
[7], Importance Sampling (IS) [8,9], and other MC simulations with
different sampling techniques. Analytical approximation methods,

such as first- and second-order reliability methods (FORM/SORM)
have been developed to estimate the reliability without large
numbers of MC simulations. FORM and SORM computations are
based on linear (first-order) and quadratic (second-order) approx-
imations of the limit-state surface at the most probable point (MPP)
[3,4]. Under the condition that the limit-state surface at the MPP is
close to its linear or quadratic approximation and that no multiple
MPPs exist in the limit-state surface, FORM/SORM are sufficiently
accurate for engineering purposes [10–13]. If the final objective is
to calculate the system response given a reliability index, the
inverse reliability method can be used. The most well-known
approach is inverse FORM method proposed in [14–16]. Du et al.
[17] proposed an inverse reliability strategy and applied it to the
integrated robust and reliability design of a vehicle combustion
engine piston. Saranyasoontorn and Manuel [18] developed an
inverse reliability procedure for wind turbine components. Lee
et al. [19] used the inverse reliability analysis for reliability-based
design optimization of nonlinear multi-dimensional systems.
Cheng et al. [20] presented an artificial neural network based
inverse FORM method for solving problems with complex and
implicit performance functions. Xiang and Liu [21] applied the
inverse FORM method to S-N fatigue life predictions.

Conventional forward and inverse reliability analysis is based
on the existing knowledge about the system (e.g., underlying
physics, distributions of input variables). Time-dependent relia-
bility degradation and system response changes are not reflected.
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For many engineering problems, usage monitoring or inspection
data are usually available at a regular time interval either via
structural health monitoring system or non-destructive inspec-
tions. The new information can be used to update the initial
estimate of system reliability and responses. The critical issue is
how to incorporate the existing knowledge and new information
into the estimation. Bayesian updating is the most common
approach to incorporate these additional data. By continuous
Bayesian updating, all the variables of interest are updated and
the inference uncertainty can be significantly reduced, provided
the additional data are relevant to the problem and they are
informative. Hong [22] presented the idea of reliability updating
using inspection data. Papadimitriou et al. [23] reported a
reliability updating procedure using structural testing data.
Graves et al. [24] applied the Bayesian analysis for reliability
updating. Wang et al. [25] used Bayesian reliability updating for
aging airframe. A similar updating approach using maximum
relative entropy principles has also been proposed in [26]. In
those studies, Markov chain Monte Carlo (MCMC) simulations
have been extensively used. For practical problems with compli-
cated performance functions, simulations are time-consuming
and efficient computations are critical for time constrained
reliability evaluation and system response prognostics. In struc-
tural health management settings, simulation-based method may
be infeasible because updating is frequently performed upon the
arrival of sensor data. All these applications require efficient and
accurate computations. However, very few studies are available
on the investigation of complete analytical updating and estima-
tion procedure without using simulations.

The objective of this study is to develop an efficient analytical
computational framework for system reliability and response
updating without using simulations. Computational components
evolved in this approach are Bayesian updating, reliability esti-
mation, and system response estimation given a reliability index.
For Bayesian updating, Laplace method [27] is proposed to obtain
an analytical representation of the posterior distribution and
avoid using simulations. Once the analytical posterior distribution
is obtained, the FORM method can be applied to estimate the
updated system reliability or probability. In addition, system
response predictions given a reliability index or confidence
interval can also be updated using the inverse FORM method.

The paper is organized as follows. First, a general Bayesian
posterior model for uncertain variables is formulated. Relevant
information such as response measures and usage monitoring
data are used for updating. Then an analytical approximation to
the posterior distribution is derived based on the Laplace method.
Next, FORM method is introduced to evaluate the reliability and a
simplified algorithm based on inverse FORM method is formu-
lated to calculate system response given a reliability index or
confidence interval. Following this, a fatigue crack example with
experimental data and a structure scale problem are presented to
demonstrate the method. The efficiency and accuracy of the
proposed method are compared with traditional simulation-
based methods.

2. Probabilistic modeling and Laplace approximation

In this section, a generic posterior model for uncertain para-
meters is formulated using Bayes’ theorem to incorporate addi-
tional information such as measurement data. Uncertainties from
model parameters, measurement, and mechanism modeling are
explicitly included. Laplace approximation is derived to obtain an
analytical representation of the posterior distribution. The
updated reliability and system responses can readily be evaluated
using this posterior distribution.

2.1. Bayesian modeling for uncertain parameters

Consider a general parameterized modelMðy; xÞ describing an
observable event d, where x is an uncertain model parameter
vector that need to be updated and y is a model independent
variable. If the model is perfect, one obtainsMðy; xÞ ¼ d. In reality,
such a perfect model is rarely available due to uncertainties from
the simplification of the actual complex physical mechanisms,
statistical identification of model parameter x, and the measure-
ment noise in d.

Given a prior probability distribution of x, pðx9MÞ, and the
known relationship (conditional probability distribution or like-
lihood function) between d and x, pðd9x,MÞ, the posterior prob-
ability distribution pðx9d,MÞ is expressed using Bayes’ theorem as

pðx9d,MÞ ¼ pðx9MÞpðd9x,MÞ 1

Zppðx9MÞpðd9x,MÞ, ð1Þ

where Z ¼
R

Xpðx9MÞpðd9x,MÞ dx is the normalizing constant.
The modelM is assumed to be the only feasible model andM

is omitted hereafter for simplicity. Let m be the model prediction
and e the error component (for example, the measurement
uncertainty of d). The variable d reads

d¼mþe: ð2Þ

The probability distribution for m is represented by the function
pðm9xÞ ¼ f MðmÞ and the probability distribution for e is repre-
sented by the function pðe9xÞ ¼ f EðeÞ. The conditional probability
distribution of pðd9xÞ can be obtained by marginalizing the joint
probability distribution of pðd,m,e9xÞ as follows:

pðd9xÞ ¼
Z

M

Z
E

pðm9xÞpðe9xÞpðd,m,e9xÞ de dm: ð3Þ

Because d¼mþe,

pðd,z,e9xÞ ¼ dðd�m�eÞ: ð4Þ

Substitute Eq. (4) into Eq. (3) to obtain

pðd9xÞ ¼
Z

M
f MðmÞf Eðd�mÞ dm: ð5Þ

Next, terms fM(m) and fE(e) need to be determined. Consider a
general case where the model prediction m has a statistical noise
component EAE with a distribution function pðE9xÞ ¼ f EðEÞ due to
the modeling error m¼Mðy; xÞþE. Eq. (2) is revised as

d¼Mðy; xÞþEþe: ð6Þ

Marginalizing pðm9E,yÞ ¼ dðm�Mðy; xÞ�EÞ over E to obtain

f MðmÞ ¼ pðm9xÞ ¼
Z
E

pðE9xÞpðm9x,yÞ dE¼ f Eðm�Mðy; xÞÞ: ð7Þ

Eq. (6) is not a model mathematical expectation plus error terms
defined in classical regression analysis. Mðy; xÞ is a general
notation for the model and Eq. (6) separates the uncertainty from
intrinsic uncertainty (i.e., x), modeling uncertainty (i.e., E) and the
measurement uncertainty (i.e., e) for probabilistic modeling. For
the purpose of illustration, E and e are assumed to be two
independent zero-mean normal variables with standard devia-
tions of sE and se, respectively. Eq. (5) is the convolution of two
normal distributions and it can be further reduced to another
normal distribution as

pðd9xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
M

q exp
�½d�Mðy; xÞ�2

2s2
M

( )
, ð8Þ

where s2
M ¼ s2

E þs2
e . If the measurement uncertainty is known

(e.g., through calibration test), se can be explicitly assigned.
Substituting Eq. (8) into Eq. (1) yields the posterior probability

distribution of the uncertain parameter x incorporating the obser-
vable event d. The reliability and responses of the system can
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