
Redundancy of structural systems with and without maintenance: An
approach based on lifetime functions

Nader M. Okasha, Dan M. Frangopol �

Department of Civil & Environmental Engineering, Center for Advanced Technology for Large Structural Systems (ATLSS), Lehigh University, Bethlehem, PA 18015-4729, USA

a r t i c l e i n f o

Article history:

Received 6 November 2008

Received in revised form

9 December 2009

Accepted 7 January 2010
Available online 13 January 2010

Keywords:

Structural systems

Lifetime functions

Redundancy

Availability

Lifetime performance

Maintenance

Optimization

a b s t r a c t

The lifetime reliability of existing structures may be quantified by lifetime functions. Redundancy is an

additional type of structural performance indicator that is defined as a measure of warning available

prior to system collapse. Lifetime functions provide a basis on which lifetime redundancy can be

evaluated and its quantification can be formulated. The objective of this paper is to present a novel

approach for the evaluation of the lifetime redundancy of structural systems. Measures of lifetime

redundancy based on lifetime functions are investigated. The effects of maintenance on lifetime

functions and redundancy are also presented. Furthermore, the lifetime redundancy is incorporated in a

maintenance optimization algorithm. This optimization algorithm is illustrated on an existing highway

bridge.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is reported by the Federal Highway Administration [14] that
as of the end of the year 2007, over a quarter of the estimated
600,000 highway bridges in the United States were either
structurally deficient or functionally obsolete. This alarming fact
draws strong attention to the need of seeking measures to
improve the status of this bridge inventory. The scarcity of funds
available dictates that these measures are optimally effective and
economical. These facts shifted the interest of many researchers
over the last decade to the area of assessment and prediction of
the structural performance of highway bridges and optimum
planning of maintenance interventions.

The efforts of researchers in this field have offered a variety of
models and techniques that aim to accurately assess the current
condition and predict the future changes of the structural perfor-
mance of highway bridges. Today, it is still a paramount interest of
the researchers in this field to either improve existing models or
propose new models that provide efficiency and economy.

Research on the topic of using lifetime functions has shown
their effectiveness as useful tools in quantifying the lifetime
reliability of highway bridges [16]. Lifetime functions are
mathematical models representing the time-variant performance
of structural components and systems. Optimum maintenance
strategies have been obtained based on the predicted lifetime

reliability [17]. However, lifetime functions offer the ability of
deriving a number of other performance indicators, one of which
is the lifetime redundancy.

One of the lessons that should be learned from the failure of
several structures such as the failure of the I-35W Mississippi River
Bridge in August 2007 is the crucial need of providing redundancy in
structures. Although, the lack of redundancy was not apparently the
direct cause of the collapse of the I-35W Bridge, it may be argued
that additional load paths may have prevented that event. Even a
single flaw in the design or construction of a structure may turn into
a deadly catastrophe. Alternate load paths provided by redundant
members may prevent the occurrence of such a catastrophe. Hence,
predicting and maintaining the lifetime redundancy, in addition to
the lifetime safety, is a desired goal of an improved maintenance
optimization algorithm.

This paper investigates possible measures for the lifetime
redundancy of structural systems using representations of life-
time functions. The effects of maintenance on lifetime functions
and redundancy are also presented. Furthermore, the lifetime
redundancy is incorporated into a maintenance optimization
algorithm. This optimization algorithm is illustrated on an
existing highway bridge.

2. Lifetime component reliability measures

Lifetime functions offer a number of lifetime reliability
measures for components and systems. A number of these
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measures are introduced in this section. These measures have
been used extensively by many structural reliability researchers
for all types of structures including bridges. This section is a
background review of these measures. The discussion in this
section is limited to components that are not maintained or
repaired throughout their service life. This limitation, however,
will be removed in later sections.

2.1. Time to failure probability density function

The probability density function (PDF) of the time to failure is
the link between available statistical information and the
predictive lifetime models. The time to failure of a component,
treated as a random variable T, is defined as the time elapsing
from the time the component is put into operation until it fails for
the first time [6]. The choice of the time to failure PDF is dictated
by the component characteristics and its failure pattern. Typical
time to failure PDFs include the Weibull distribution and the
exponential distribution, which is a special case of the Weibull
distribution. In fact, a Weibull distribution has been fitted to the
lifetimes of the Dutch stock of concrete bridges [15]. The PDF of
the Weibull distribution is defined as [9]

f ðtÞ ¼
klðltÞk�1e�ðltÞk for t40

0 otherwise

(
ð1Þ

where l is a scale parameter and k is a shape parameter. The
exponential function is a special case of the Weibull function
having a shape parameter k=1.0.

2.2. Survivor function and cumulative probability of failure

The cumulative probability of failure F(t) is the probability that
the time to failure of a component is less than t and is calculated
as

PðTrtÞ ¼

Z t

0
f ðuÞdu ð2Þ

The complement of F(t) is the survivor function S(t), sometimes
referred to as the reliability function, which is the probability that
the component will not fail before time t and is calculated as [9]

SðtÞ ¼ 1�FðtÞ ¼ PðT4tÞ ¼

Z 1
t

f ðuÞdu ð3Þ

Fig. 1 illustrates schematically how F(t), S(t) and f(t) are
geometrically interrelated. The area under f(t) is 1.0 and it is
divided into the area before the time tf that represents F(tf) and
the area after the time tf that represents S(tf). It is worth
emphasizing that the time to failure PDF, f(t) can also be

derived from its survivor function as follows [9]:

f ðtÞ ¼
�dSðtÞ

dt
¼

dFðtÞ

dt
ð4Þ

2.3. Hazard function and cumulative hazard function

The hazard function, h(t), also known as the failure rate, is
defined as the conditional probability that given a component has
survived until time t it will fail in the time interval t+dt [13]. The
hazard function is calculated as [9]

hðtÞ ¼
f ðtÞ

SðtÞ
¼�

dSðtÞ

dt

1

SðtÞ
ð5Þ

The cumulative failure rate from the time the component is
put in service until the time t is also known as the cumulative
hazard function, H(t), which is calculated as [9]

HðtÞ ¼

Z t

0
hðuÞdu ð6Þ

2.4. Availability

A component is available at time t if it is functioning at time t.
The event that a component survives (i.e., does not fail) up to time
t is in fact the same event that the component is available at time
t. Therefore, the probability of survival of a component from the
time it is put in service until time t is the same as the probability
that the component is available at time t. Hence, the availability
A(t) is equivalent to the survivor function S(t) of a non-repairable
component. In fact, the survivor function of a non-repairable
component is a special case of its availability. They both differ
when the component is repaired or replaced [8]. This issue will be
discussed later. The unavailability of a component, An(t)=1–A(t),
is the probability that it has failed before time t and thus it is
unavailable (not functioning) at time t [2].

3. Lifetime system reliability

Complex systems are usually decomposed into functional
entities composed of components or subsystems for the purpose
of reliability analysis. By combining the appropriate series and
parallel subsystems of the system model systematically, the
entire system can be reduced to one single equivalent component.
The reliability of this equivalent component is the reliability of
the system. In fact, this method has successfully been applied in
structural engineering [17,18].

However, many practical systems have complex structures
that are not purely series, parallel or series–parallel [13]. Various
more general techniques are available to treat such systems. The
minimal cut set method is chosen for this study.

The first step in the minimal cut set method is to identify all
cut or path sets of the system. A minimal cut set is a set of
components in the system which by failing causes the system to
fail, but if does not fail the system does not fail. On the other hand,
a minimal path set is a set of components in the system which by
functioning ensures the system to function, but if fails the system
fails [6]. The second step is to establish the state function of the
system. The state function of a system composed of n components
is a binary function described as [6]

fðxÞ ¼fðx1; x2; . . . ; xnÞ ð7Þ

and takes a value of 1.0 if the system is functioning and 0.0
otherwise, where xi is a binary variable that describes the state of
the component i such that it takes the value of 1.0 if the
component is functioning and 0.0 otherwise. The state function of
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Fig. 1. Geometric relationship between the PDF of the time to failure f(t), the

survivor function S(t); and the cumulative probability of failure F(t).
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