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ABSTRACT

Dempster-Shafer Theory of Evidence (DST), as an alternative or complementary approach to the
representation of uncertainty, is gradually being explored with complex practical applications beyond
purely algebraic examples. This paper reviews literature documenting such complex applications and
studies its applicability from the point of view of the nature and amount of data that is typically
available in industrial risk analysis: medium-size frequential observations for aleatory components,
small noised datasets for model parameters and expert judgment for other components. On the basis of
a simple flood model encoding typical risk analysis features, different approaches to quantify
uncertainty in DST are reviewed and benchmarked in that perspective: (i) combining all sources of
uncertainty under a single-level DST model; (ii) separating aleatory and epistemic uncertainties,
respectively, modeled with a first probabilistic layer and a second one under DST. Methods for handling
data in probabilistic studies such as Kolmogorov-Smirnov tests and quantile-quantile plots are
transferred to the domain of DST. We illustrate how data availability guides the choice of the settings
and how results and sensitivity analyses can be interpreted in the domain of DST, concluding with

recommendations for industrial practice.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Dempster-Shafer Theory of Evidence (DST) as an alternative
method for the representation of uncertainty has gained an
increasing amount of attention both from the theoretical and the
applied point of view. DST is still a young field compared to
probabilistic analysis with the first major works published by
[1,2]. The main focus on early DST approaches was on data fusion
and artificial intelligence. The ability of DST to model and
propagate uncertainty through systems was only sparsely utilized
in the last millennium. However, in the recent past, several
approaches favouring DST have emerged and drive on the
development of this theory towards larger applicability. A turn
point may have come with the Sandia workshop on epistemic
uncertainty, whose results culminated in a special issue of this
journal [3]. Beyond the initial algebraic benchmarks, the present
paper is motivated by the ongoing discussion on the applicability
and modeling best practices of DST for complex industrial risk
models.

As will be reviewed by this paper, a number of challenges
come up with the use of DST within complex industrial risk
analyses: the complexity of communicating results to various
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stake-holders, of encoding it within formal regulatory processes
[4], or the computational load [5,6]. This paper then focuses on an
additional challenge: the issue of the nature and amount of data
that is typically available in industrial risk analysis, and the
practicality of various DST or combined probabilistic-DST settings
to represent such information. In this work, we illustrate on a
representative risk analysis example different ways and propose
new methods to deal with data, expert estimates, propagation,
result interpretation and post-processing/sensitivity analysis. We
focus on the interpretation and discussion on the aspects that are
most relevant to the practitioner.

Another important focus of this work is the comparison of
several settings using DST, discussing the underlying paradigms
and applying recent techniques for uncertainty modeling and
propagation. The differences in the uncertainty paradigms of a
level-1 and a level-2 DST approach will be discussed and
compared to probabilistic approaches. Hereafter, level-1 refers
to approaches eschewing any distinction between kinds of
uncertainty, and hence randomise them altogether within a
combined sample space. Level-2 refers to approaches separating
aleatory and epistemic components into hierarchic uncertainty
models, and hence involves more elaborate sample spaces of
distributions with distributed parameters.

The remainder of this paper is structured as follows: Section 2
formalizes and compares in more detail the level-1 and level-2
approaches, which utilize probabilistic or DST models. Section 3
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provides a review of recent, industrially relevant DST case studies,
focussing essentially on the comparison and categorization with
respect to certain criteria. Section 4 presents an educational
example in the field of hydrology, developed as a realistic
benchmark for uncertainty modeling throughout the French
industry. Section 5 builds level-1 and level-2 uncertainty models
from available data and expert knowledge. Section 6 addresses
the interpretation of results that are obtained when propagating
level-1 and level-2 models through the system function and
discusses the possibilities for post-processing results. The article
ends with a critical discussion of the study results and the
advantages and drawbacks of the different quantifications.

2. The issue of uncertainty modeling and alternative
frameworks

2.1. The need for a choice of uncertainty representation

Uncertainty studies involve the representation of the uncer-
tainty affecting the inputs x=(xy,..., Xp), XeQ of a system model f
and the study of its impact on the output variable(s) of interest z

z2=f(1,...,Xp) (1)

Within the field of industrial risk analysis, x is thought to cover
a large variety of parameters, such as system characteristics,
dimensions, material properties, operating conditions, state of
system components or initiating events or even model parameters.
The variable(s) of interest z is (are) usually incorporating safety or
performance indicators. Components of x may be affected by
different types of uncertainty sources such as inner variability
(space, time), lack of knowledge, model imperfections, etc.

Uncertainty treatment involves the choice of a mathematical
representation of uncertainty or setting, which may be determi-
nistic, probabilistic or non-probabilistic. Such a setting takes the
form of a distribution over a sample space Q2 of possible values, the
mathematical definition of which depends on the paradigm
chosen as will be detailed subsequently.

Hence the classical steps [7] are: uncertainty modeling (i.e. the
choice of a distribution representing the extent of uncertainty in
the inputs), uncertainty propagation (i.e. the computation of the
extent of uncertainty in the outputs) and ranking/sensitivity
analysis (i.e. apportioning relative input contributions into output
uncertainty). The final outcome is an estimated uncertainty model
on the variable(s) of interest and associated quantities of interest:
according to the goal of the study, these can be the measures of
exceeding a threshold, mean/median of the output uncertainty, a
measure of dispersion or information on quantiles.

The most frequent representation of uncertainty is the
standard (or level-1) probabilistic setting, wherein a probability
distribution defined over Q represents x as a random variable.
Two popular interpretations of such representation have been
extensively discussed in [8-13]. The frequentist interpretation
considers x and z=f{x) as observable realizations of an underlying,
repeatable probabilistic model and this underlying probabilistic
model can be approximated from a large set of data. The
subjective interpretation considers probability distributions as
subjective preferences of the decision-maker [7,14], without the
need for an underlying repeatable phenomenon with observable
frequencies. In using a level-1 probabilistic setting, the user refers
either to the frequentist or the subjective perspective. In both
cases, common quantities of interest are e.g. P(Z>c), the
probability of exceeding a threshold ¢ or the 99% quantile
Q99(Z). An often-criticized drawback is the lack of separate
accounting for aleatory and epistemic uncertainty, which is not
obtainable within the level-1 setting. Several alternative ways

have been developed for such situations, including DST or double-
level probabilistic settings reviewed here below.

2.2. Uncertainty representation in evidence theory

This section serves a short introduction into DST as the method
is not as well known as probability theory. Comprehensive works
with detailed presentations of DST are e.g. [15-17].

A good way to introduce DST is to present the differences
compared to probabilistic modeling, and this will be done in
discrete (countable) spaces to keep simple. Uncertainty regarding
a discrete random variable x in a probabilistic model is
represented by a random variable X. This means that a mass
function m can be used to describe the evidence put on each value
xe Q, expressing the probability P(X=x). This mass function is
given as

m:Q—[0,1]
> m@=1 )
aeQ

In discrete probabilistic models, m defines a probability
distribution and P(X=x)=m(x). It is important to outline this
well-known equality, because it will not hold in the case of DST.
From m, the probability of x to be in interval [x,X], P(x € [x,X]) can
be obtained by adding over all mass values

Pxex.x)= > m(@ 3)
aexX]

The cumulative distribution function (CDF) F(x)=P(xe[ —Infx])
is a special case of Eq. (3).

More formally, probability theory involves developing over the
sample space 2 a probability space (£, A, P), where the probability
function P is defined on a suitably restricted collection A=(A;); of
subsets (events) A, of Q that enjoys the properties of a o-algebra,
i.e. contains ¢, Q2 and is stable through the countable elementary
operations of complementation, union and intersection as follows:

AAC.A = Q\A;C.A (4)

(A CA=Uu(AcA (5)

the combination of those two obviously implying stability under
countable intersections. Hence probability, as a function mapping
such collection of events A into [0, 1] is required to respect
P()=0 and P(2)=1 and to be sub-additive: provided that
AnB= g then P(AUB)=P(A)+P(B), and such additivity holds for
any countable collection of disjoint events (A,).

Those basic properties are essential to understand the
differences with Dempster-Shafer representations. In Dempster—
Shafer, a mass function m : P(Q2)—[0, 1] maps probability masses
on sets, not only on point values. Each subset of Q with a mass
> 0 is referred to as focal element. Recall that the descriptions and
methods in this work are restricted to mass functions with a finite
number of focal elements (i.e. intervals or points with a
probability mass). In that case, descriptions on continuous
variables but with a finite number of focal elements are similar
to discrete distributions except one crucial difference. In discrete
distributions, probability masses can only be assigned to points.
However, in DST, the (probability) mass function not only
assigned to single values but instead to sets or ranges. In DST,
uncertainty on x is described by its basic probability assignment
(BPA) m:

m: P(Q)—1[0,1]
m(Z)=0
Zm(A):l (6)

AcQ
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