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Aim of the present work is to communicate a part of the experience gathered by the first author after 40
years of involvement in Fracture Mechanics and Failure of Materials in general, through close collabora-
tion with his colleagues. From this point of view, a few prerequisites for the, say, correct formation of a
failure criterion are considered. For example, are of equal validity deductive and inductive approaches?
Furthermore, some common characteristics of existing failure criteria are discussed and their effect on
the quality and the general applicability of failure criteria is presented. For example, how and why does
geometry affect failure predictions? Do cracks or other singularities require a special treatment? Is the
characterization of materials through usual constitutive equations adequate? In a more practical level,
the necessity of introducing as more as possible stress/strain components in the formation of a failure
criterion is emphasized, driving directly to strain energy density (SED) considerations. The deterministic
requirement of “cause-effect” demands available (i.e. elastic) SED, excluding plastic work, and, conse-
quently, plastic strains from the formation of any criterion. Considering the only two mechanisms of stor-
ing SED in materials (volume-lengths and shape-angles changes of the elementary volume), we arrive
into a dilemma regarding the “behavior” of the SED parts been spent for volume or shape changes. In case
they are collaborative, their sum (i.e. the total elastic SED) is adequate to describe failure. Contrarily, in
case of competitive behavior, each SED component has its-own importance and must be traced sepa-
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rately. Finally, existing groups of criteria are commented and some conclusions are presented.
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1. Introduction

In the Euclidian-Newtonian world - where we and other mate-
rials live - source of knowledge and wisdom is the direct observa-
tion of our environment. We put an order/explanation to
phenomena by either (a) introducing an axiomatic hypothesis gov-
erning a class of them and concluding, in a deductive manner (top
down), their observed behavior or (b) comparing many similar
cases in order to locate behavioral similarities allowing for the
extraction of a rule in an inductive way (bottom up). Both methods
are almost equivalent but in case of induction it is not clear if the
prerequisite of causality is satisfied. All observed parameters may
not play role in the phenomenon, being in fact side-effects. In other
words, a series of experiments may result in a dilemma concerning
the “space” of description of the experimental data, namely which
of the parameters are causally connected, the remaining being sim-
ply “present”. Classical example of a “wrong” space is fatigue where
a purely linear elastic parameter (stress intensity factor K;) is used
to describe a purely non-linear elastic/plastic strains phenomenon.
The outcome, after almost two centuries of hard work, is disap-
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pointing. A Keplerian approach is, still, missing to put an order to
the Ptolemaic chaos of the world of fatigue. This is due to the fact
that causality is not satisfied (K; is irrelevant to, at least, elastoplas-
tic phenomenon of fatigue and after a few cycles is meaningless)
and Paris law for fatigue is in fact an interpolation procedure.
Why is causality important? Because the Euclidian—-Newtonian
world is deterministic and in practical terms, no one can guarantee
that an even huge number of experiments is wide enough to cover
extreme cases belonging apparently to the same group. Hence the
absence of a rational cause drives to a kind of “conceptual extrapo-
lation”, often accompanying inductive approaches.

On the other hand, deductive approaches fail to predict exactly
experimental results, showing however a more or less acceptable
agreement with them. In any case, they are free from the danger-
ous and unpredictable conceptual extrapolation and, with a proper
safety factor, can cover a really wide range (if not all) of similar
phenomena. In other words, deductive approaches serve as the
thin main line passing through experimental data. This way, axi-
omatic-deductive approaches can be considered as “Laws”,
although inductive ones may be called “Results”.

The space of description of a class of similar phenomena may
be wrong as in case of fatigue but, also, it may be “incomplete”.
The dimensions of such spaces are fewer than the number of
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independent physical parameters being involved. Constitutive
equations are a typical example. In the friendliest case of an isotro-
pic material two mechanical properties are necessary to describe
its behavior, implying the execution of two independent experi-
ments. Instead, one experiment is executed (usually uniaxial
tension to obtain o, = f{e;)) assuming identical results for all three
axes. The area under this curve represents the total SED. The second
independent experiment (usually torsion) is required to evaluate,
for example, volume expansion or shear modulus. Following the
rationale of von Mises, four “equivalent” quantities (equivalent
stress/strain oeq, €eq and hydrostatic pressure/volume expansion
p, © are introduced, which in terms of principal stresses/strains are:

2

Teq =51(01 — 02 40— 03 +(03-01)] ", p=(01+02+03)/3

2 2 2,172
=75y l(01—€2) +(e2—e3) +(es—er)T] T, O=er+ertes

(M

They form two constitutive equations, g¢q = fle.q) and p = f{®). The
first of them, being the classical von Mises equation, describes the
behavior of a material under shear stresses per se and the second
one the respective behavior under normal stresses per se. This
way, an interpretation of the response of materials in physical
terms is obtained and the space of description is complete.

The problem of selection of the correct space of description of a
class of experiments becomes more difficult when guidance from
the appropriate constitutive equations is absent. One has to make
a choice of a pair of mechanical quantities (stresses, strains, SED,
plastic work, etc.) between about 170 different combinations of
these quantities! Most of them are a priori rejected in terms of
taste and experience of the researcher. Yet, enough room remains
for the introduction of many failure criteria. So, it is rather conser-
vative to conclude that even a single set of objective experimental
data can be the launching point of appearance of some dozens of
criteria to interpret them. At eighties and nineties, whole issues
of reputable journals, like Int. J. of Fracture, Engng. Fracture Mechan-
ics and many others, were solely devoted to “new” fracture criteria
[1]. Beyond the unnecessary saturation of information [2] which
forbids even to have a look at most of them, the necessity of intro-
duction of a, so to say, hyper-criterion emerges for the proper
selection of one out of dozens “normal” criteria.

An additional cause of confusion is the effect of geometry (size
and shape of the specimen) on the failure of materials. Here, by
“Geometry” is meant not only the silhouette (external shape) of
a specimen but, also, any pre-existing internal flaws. Flaws are loci
of geometry (structure) different from that of neighboring areas. A
through thickness visible crack works in the same way as an invis-
ible embedded crack. Both redistribute stress field. It is known that
the strength of concrete depends on the volume (size) of the spec-
imen even in case of minimal parasitic shear stresses between
grips and specimen. Increased volume increases the number of
strong microstructural singularities (natural flaws) causing prema-
ture failure of the bigger specimen. On the other hand, specimens
of the same volume but different shape have different surface/vol-
ume ratio. This change is vital for the failure of materials, as we
will see in the sequel. Consequently, the apparent “size effect” is
caused by the departure of the material from the assumption of
geometrical smoothness and continuity of Mechanics of Continua.
In case of a large number of flaws with roughly equal severity,
“Statistics” of Nature allows for acceptably constant mean behav-
ior of a material. This mean behavior changes when either the
same population is partially exposed to different boundary condi-
tions (shape effect) or varies by a few orders of magnitude (size
effect). The present task is to describe shape/size effect in pure
terms of Mechanics of Continua avoiding the introduction of
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ill-defined qualitative terms like “core region”, “fracture process
zone” or categorization of materials as quasibrittle or quasiductile.

The natural inhomogeneity of materials was faced by Griffith
through his bright idea of introducing an enormous macroscopic
defect, called “crack”. The presence of an artificial macro-crack
allows for the annihilation of any natural flaws in the specimen.
Then, the material becomes a continuous mean with “strange”
geometry, allowing for the application of the laws of Mechanics
of Continua. The presence of a crack modifies the stress distribu-
tion in the specimen but not the laws governing its behavior
because stresses are geometrical entities, independent of material
properties. This “Iron Rule” is violated only in case of rapidly
changing loads, due to the appearance of mass-inertia phenomena.
It is difficult to accept that geometry affects the behavior of mate-
rials through an additional fictitious mechanism beyond stress
redistribution. In that case, we had to accept that specimen geom-
etry is a material property. So, one wonders on the rational basis of
different values of critical stress intensity factors between plane-
stress and plane-strain geometries. In the sequel, we will expand
some of the as above mentioned comments in an attempt to show
that novel approaches are not necessarily better approaches.

2. Overview of failure criteria

Let us now make some short comments on existing classes of
failure criteria.

2.1. Incomplete space - inductive approach

We start with an example of inductive treatment of a familiar
problem in Strength of Materials, namely sheet metalforming.
There a Forming Limit Diagram (FLD) is asked to describe limiting
strains. This FLD is obtained by either in-plane stretching or out-
of-plane (punch) stretching of the sheet. Pairs (e4, eg) of such
strains seem to follow two empirical rules, namely e, ~ 1 + e or
ea~ 1 — 0.5ep (see for example [3].

However, a problem of incomplete space appears. A, through-
thickness third strain es; exists as obtained from equivoluminal
changes of plastic strains. Then, in general we have:
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Symmetry considerations (ea=e; eg=¢j,1,j=1,2,3,i+# j), valid for
isotropic materials, drive to six straight lines forming a hexagon
symmetric to the diagonals of the space (e4, eg) as shown in Fig. 1.

The hexagon is, simply, the old Tresca failure surface satisfying
Eq. (2) in each quadrant. Obviously, an ellipse (e.g. the von Mises
one) could be obtained by replacing Eq. (2) by second order
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Fig. 1. The Tresca representation of a typical forming limit diagram.
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