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a b s t r a c t

This paper presents methods to evaluate the reliability and optimize the maintenance of engineering

systems that are damaged by shocks or transients arriving randomly in time and overall degradation is

modeled as a cumulative stochastic point process. The paper presents a conceptually clear and

comprehensive derivation of formulas for computing the discounted cost associated with a

maintenance policy combining both condition-based and age-based criteria for preventive main-

tenance. The proposed discounted cost model provides a more realistic basis for optimizing the

maintenance policies than those based on the asymptotic, non-discounted cost rate criterion.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Critical engineering systems in nuclear power plants, such as
the reactor fuel core and piping systems, experience degrada-
tion due to stresses and unfavorable environment produced by
transients or shocks in the reactor. For example, unplanned
shutdowns and excursions to poor chemistry conditions result in
degradation of components through corrosion, wear and fatigue of
material. To control the risk due to failure of critical engineering
systems in the plant, maintenance and replacements of degraded
components are routinely performed. Because of uncertainty
associated with the occurrence of shocks and damage produced
by them, theory of stochastic processes plays a key role in
estimating reliability and developing cost-effective maintenance
strategies.

The failure of a system or structure occurs when its strength
drops below a threshold that is necessary for resisting the applied
stresses. This paper investigates the reliability of a structure that
suffers damage due to shocks arriving randomly in time.
Technically the total damage experienced by a system can be
modeled as a sum of damage increments produced by individual
shocks. To incorporate uncertainties, shocks are modeled as a
stochastic point process and the damage produced by each shock

is modeled as a positive random variable. In essence, the
cumulative damage is modeled as a compound point process [1].

The theory of stochastic processes and its applications to
reliability analysis have been discussed in several monographs
[2–6]. Mercer [7] developed a stochastic model of wear (degrada-
tion) as a cumulative process in which shocks arrive as a Poisson
process. A more generalized formulation of the first passage time
or reliability function due to damage modeled as a compound
renewal process was presented by Morey [8]. Kahle and Wendt [9]
modeled shocks as a doubly stochastic Poisson process. Ebrahimi
[10] proposed a cumulative damage model based on the Poisson
shot noise process. Finkelstein [11] presented a non-homogeneous
Poisson process model of shocks and considered the effect of
population heterogeneity.

The cumulative damage models are popularly applied to the
optimization of maintenance policies using the condition or age
based criteria. Nakagawa [12] formulated a preventive mainte-
nance policy, and an age-based policy was analyzed by Boland and
Proschan [13]. Later several other policies were investigated
by Nakagawa and co-workers [14–16]. Aven [17] presented an
efficient method for optimizing the cost rate. An in-depth
discussion of inspection and maintenance optimization models
is presented in a recent monograph [18]. Grall et al. [19,20]
analyzed condition-based maintenance policies by modeling the
damage as a gamma process.

Previous studies mostly adopted asymptotic cost rate criterion
for optimizing maintenance policies. However, the optimization of
discounted cost is more pertinent to practical applications. Our
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experience also suggests that practical applications of compound
point processes are limited due to lack of clarity about the
mathematical derivations of cost rate and life expectancy.
The primary objective of this paper is to present a conceptually
clear derivation of discounted cost criterion for optimizing the
maintenance of systems subject to stochastic cumulative damage.
The proposed derivation is general and it can be reduced to special
cases of homogeneous or non-homogeneous Poisson processes, or
renewal process.

This paper is organized as follows. In Section 2, stochastic
models of degradation and maintenance are presented. Section 3
describes a mathematical framework to evaluate the total
expected discounted cost of maintenance. Expressions are derived
for three specific maintenance policies. Illustrative examples
are presented in Section 4 and conclusions are summarized in
Section 5.

2. Stochastic model for degradation

In this paper the degradation is modeled as a stochastic
cumulative damage process, where the system suffers damage
due to shocks produced by transients (extreme of pressure,
temperature and chemical environment). In this model occur-
rences of shocks are random in time and the damage produced by
each shock is also a random variable. The total damage at time t is
a sum or cumulation of damage increments produced by all j

shocks occurred up to this time. In this section we present some
well-known results, see for example Tijms [6] or Nakagawa [18].

Random occurrences of shocks over time, S1;S2; . . . ;Sj; . . ., are
taken as points in a stochastic point process on ½0;1Þ, as shown in
Fig. 1. The total number of shocks in the interval ð0; t� is denoted by
N ðtÞ and N ð0Þ � 0.

Define the probability of occurrence of j shocks in ð0; t� as

HjðtÞ ¼ PðN ðtÞ ¼ jÞ; ð1Þ

and the expected number of shocks as

RðtÞ ¼ EðN ðtÞÞ: ð2Þ

In a given time interval ð0; t�, the probability associated with the
number of shocks ðjÞ is related with that of the time of occurrence
of the j th shock ðSjÞ as

FjðtÞ ¼ PðSjrtÞ ¼ PðN ðtÞZ jÞ ¼
X1
i ¼ j

HiðtÞ: ð3Þ

Using this, Eq. (1) can also be rewritten as

HjðtÞ ¼ PðN ðtÞZ jÞ � PðN ðtÞZ jþ1Þ ¼ FjðtÞ � Fjþ1ðtÞ: ð4Þ

Note that FjðtÞ depends on the distribution of the time between
the shocks.

A shock produces a random amount of damage Y, and its
cumulative distribution function is denoted as

GðxÞ ¼ PðYrxÞ: ð5Þ

The damage occurred at the j th shock is denoted as Yj.

The evaluation of cumulative damage is based on two key
assumptions: (1) damage increments, Y1;Y2; . . ., are independent
and identically distributed (iid), and (2) the damage increments
ðYjÞjZ1 and the shock process fN ðtÞ : tZ0g are independent.

The total damage caused by j shocks is given as

Dj ¼
Xj

i ¼ 1

Yj; jZ1; ð6Þ

and D0 � 0. The distribution of Dj is obtained from the convolution
of GðxÞ as

PðDjrxÞ ¼ GðjÞðxÞ; ð7Þ

where

Gðjþ1ÞðxÞ ¼

Z x

0
GðjÞðx� yÞdGðyÞ ¼

Z x

0
Gðx� yÞdGðjÞðyÞ: ð8Þ

Note that Gð0ÞðxÞ ¼ 1, xZ0. The total damage, ZðtÞ, at time t,
however, depends on the number of shocks N ðtÞ occurred in this
interval, i.e.,

ZðtÞ ¼
XN ðtÞ
j ¼ 1

Yi ¼DN ðtÞ: ð9Þ

Using the total probability theorem and independence between
the sequence Y1;Y2; . . . and N ðtÞ, we can write for x40

PðZðtÞ4xÞ ¼
X1
j ¼ 1

PðDj4x;N ðtÞ ¼ jÞ ¼
X1
j ¼ 1

ð1� GðjÞðxÞÞHjðtÞ: ð10Þ

Using the facts that
P1

j ¼ 0 HjðtÞ ¼ 1 and Gð0ÞðxÞ ¼ 1, the distribution
of the total damage can be written as

PðZðtÞrxÞ ¼H0ðtÞþ
X1
j ¼ 1

GðjÞðxÞHjðtÞ ¼
X1
j ¼ 0

GðjÞðxÞHjðtÞ: ð11Þ

Substituting H0ðtÞ ¼ 1� F1ðtÞ and HjðtÞ ¼ FjðtÞ � Fjþ1ðtÞ from Eq.
(4), it can be written as

PðZðtÞrxÞ ¼ 1�
X1
j ¼ 1

½Gðj�1ÞðxÞ � GðjÞðxÞ�FjðtÞ: ð12Þ

This is a fundamental expression that can be used to compute the
system reliability. Suppose damage exceeding a limit zF causes the
component failure, Eq. (12) provides PðZðtÞrzF Þ which is synon-
ymous with the reliability function.

We conclude this section with a formula for the mean value of
the first time tB that the total damage exceeds a level B

tB ¼minft : ZðtÞ4Bg: ð13Þ

So ftB4tg ¼ fZðtÞrBg and

EðtBÞ ¼
X1
j ¼ 0

GðjÞðBÞ

Z 1
0

HjðtÞdt: ð14Þ
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Fig. 1. A schematic of the stochastic shock process causing random damage.
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