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The impact of a rigid body on a thin plate with a buffer is investigated in this paper. A buffer is assumed as
a linear spring fractional derivative dashpot which exhibits the viscoelastic features. The fractional-
derivative standard linear solid model is suggested for describing the shock interaction of the impactor
with a circular elastic plate. We assume that a transient wave of transverse shear is generated in the plate
and the reflected wave does not have sufficient time to interact with the plate before the impact process
is completed. The ray method is used outside the contact spot, but the Laplace transform method is
applied within the contact region. The time-dependence of the contact force is determined. A numerical
example is carried out by considering crash scenarios in frontal impacts of the human head which could
estimate brain injury risks.
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1. Introduction

There are a number of situations in which the human body is
subjected to impact loading, including automobile crashes, falls,
blast effects, and high-energy sports. In the present paper, the hu-
man head response to drop mass impacts against frontal bone will
be considered which is important for the analysis of human brain
injury of sportsmen or automobile accident occupants. To deter-
mine the impact force that is actually being transmitted to bone
will require analytical formulation and numerical calculations.

Although bone has been known to behave viscoelastically [1,2].
Detailed experimental works on the viscoelasticity of bone have
been only carried out recently. It was reported in [3] that the stan-
dard linear solid model gave a good fit to experimental data for hu-
man cranial bone. The simplest models of linear viscoelasticity
used for describing viscoelastic properties of bone have been dis-
cussed in [4].

It should be emphasized that in recent decades fractional
calculus (integral and differential operators of noninteger order)
has been the object of ever increasing interest in many branches
of natural science, and of engineering interest as well. The applica-
tion of fractional calculus to dynamic problems of linear and non-
linear hereditary mechanics of solids was reviewed in [5].
Discussed in [6] is the employment of fractional calculus tech-
niques to problems in biophysics, while Magin [7] has surveyed
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the examples of its usage in bioengineering. In was noted that frac-
tional calculus has attracted limited attention in the field of biome-
chanics, and then has underlined that “this is surprising because
the methods of fractional calculus, when defined as a Laplace or
Fourier convolution product, are suitable for solving many prob-
lems in biomedical research”.

In recent years, this situation has been changes drastically. The
linear viscoelastic models based on the operators of the fractional
order have found a wide use in different problems of bioengineer-
ing, among them, for describing viscoelastic features of bones and
soft tissues. Using the experimental data [8] of human cranial
bone, it was shown [3] that constitutive equations of viscoelastic
materials involving fractional derivatives of different orders could
be used with a success for describing viscoelastic features of bone.
Suggested in [9] is the modification of the Biot theory using frac-
tional calculus to describe interactions between fluid and solid
structure in cancellous bone. Experimental validation of this model
using samples of human cancellous bone produced excellent
agreement between theory and experiment on ultrasonic wave
propagation through bone samples.

Since the experimental results [3] showed that human skull
structure belongs to small damped structure, we will utilize the
fractional derivative standard linear solid model to describe the
impact response of human frontal bone under high-energy impact
conditions, such as motor vehicle collisions or shock interactions of
sportsmen on sports fields. Adopt the scheme suggested in [10]
and generalize their fractional-derivative viscoelastic model of
the shock interaction of a rigid body with a plate for the case of im-
pact response of human frontal bone.
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2. Problem formulation

Consider a situation when human head is attacked by a rigid
body in the region of its forehead. It is necessary to understand
how much force is being transferred into the load-bearing bones
of the body during such a collision. Here consider the model of a
human frontal bone as a circular isotropic plate, while viscoelastic
properties of soft tissues in the place of contact are simulated by a
fractional derivative standard linear solid model.

Thus, let a rigid cylindrical body of mass m and radius ry with
the initial velocity V, impact an Uflyand-Mindlin plate of infinite
extent (this assumption is introduced due to the short duration
of contact interaction in order to ignore reflected waves) with
thickness h. The role of soft tissues between the impactor and
the bone will be played by a buffer, viscoelastic features of which
are described by a fractional derivative standard linear solid model
(Fig. 1). At the moment of impact, shock waves are generated in the
plate, which then propagate along the plate with the velocities of
transient elastic waves. Moreover we shall assume during the im-
pact process transverse forces and shear deformations predomi-
nate in the plate’s stress-deformed state in vicinity of the contact
spot (the contact region of plate and buffer interaction).

The dynamic behavior of an Uflyand-Mindlin plate behind the
transient elastic wavefronts is described in the polar coordinates
by the following equations [10]:
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Fig. 1. Scheme of the shock interaction of a rigid body and a buffer embedded in an
Uflyand-Mindlin plate.
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where r and ¢ are the polar radius and angle, respectively, M, and
M,, are the bending moments, Q. is the shear force, B is the angular
velocity of rotation of the normal to the plate’s middle surface in the
r-direction, W = w is the deflections velocity, D is the cylindrical
rigidity, p is the density, K is the shear coefficient, u is the shear
modulus, ¢ is Poisson’s ratio, and an over dot denotes the time
derivative.

The equations of motion of the present impact problem are gi-
ven by (Fig. 1)
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subjected to the initial conditions
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where o and w are the displacements of the upper and lower points
of the buffer, respectively.

The contact force F is connected with the difference in displace-
ments of the buffer’s upper and lower ends by the generalized stan-
dard linear solid model with the Riemann-Liouville derivative as
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where 7, and 7, are the relaxation and retardation times, respec-
tively, Eo is the relaxed elastic modulus, and (0 <y < 1) is the order
of the fractional derivative (fractional parameter) defined by
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3. Method of solution

The methods utilized for solving the given problem within and
out of the contact region are different, namely, the ray method is
used outside the contact spot, but the Laplace transform method
is applied within the contact region.

3.1. The ray method

Consider a shock wave in the plate as a layer of thickness 4,

within which the desired function changes from the magnitude
Z~ to the magnitude Z*, but remaining a continuous function. Then
integrating Egs. (1) and (2) over the layer’s thickness from —§/2 to
4/2, with tending § to zero, and considering that inside the layer
the condition of compatibility [11] is fulfilled in the form of
. oz 50’
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where G is the normal velocity of wave surface, and §/dt is the -
derivative with respect to time, we find the dynamic conditions of
compatibility
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where [Z] =7 -7.
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