Journal of Environmental Radioactivity 162-163 (2016) 8-13

Contents lists available at ScienceDirect

Journal of Environmental Radioactivity

journal homepage: www.elsevier.com/locate/jenvrad

Estimation of sedimentation rates based on the excess of radium 228 in granitic reservoir sediments

NVIRONMENTAL

Jean-Louis Reyss ^a, Arnaud Mangeret ^{b, *}, Christelle Courbet ^b, Sylvain Bassot ^b, Gilles Alcalde ^b, Antoine Thouvenot ^c, Jérôme Guillevic ^b

^a Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91198, Gif-sur-Yvette, France

^b Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-DGE, BP 17, Fontenay-aux-Roses, 92262, France

^c Laboratoire Microorganismes Génome et Environnement (LMGE), UMR CNRS 6023, Aubière, 63177, France

ARTICLE INFO

Article history: Received 17 February 2016 Received in revised form 22 April 2016 Accepted 23 April 2016

Keywords: Recent sediments Dating Uranium mine Radium 228 Granitic catchment

ABSTRACT

Knowledge of sedimentation rates in lakes is required to understand and quantify the geochemical processes involved in scavenging and remobilization of contaminants at the Sediment-Water Interface (SWI). The well-known ²¹⁰Pb excess (²¹⁰Pb_{ex}) method cannot be used for quantifying sedimentation rates in uranium-enriched catchments, as large amounts of ²¹⁰Pb produced by weathering and human activities may dilute the atmospheric ²¹⁰Pb. As an alternative dating method in these cases, we propose an original method based on ²³²Th decay series nuclides.

This study focuses on an artificial lake located in a granitic catchment downstream from a former uranium mine site. The exponential decay of ²²⁸Ra excess (²²⁸Ra_{ex}) with depth in two long cores yields sedimentation rates of 2.4 and 5.2 cm yr⁻¹ respectively. These sedimentation rates lead to the attribution of the ¹³⁷Cs activity peak observed at depth to the Chernobyl fallout event of 1986. The ²²⁸Ra_{ex} method was also applied to two short cores which did not display the ¹³⁷Cs peak, and mean sedimentation rates of 2.1 and 4.0 cm y⁻¹ were deduced. The proposed method may replace the classical radiochronological methods (²¹⁰Pb_{ex}, ¹³⁷Cs) to determine sedimentation rates in granitic catchments.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The present study focuses on the mobility of natural radionuclides downstream from a former uranium mine closed at the beginning of the 1980's in the Massif Central (France). The waters from the underground mine works and the former open-pit mine are discharged after physicochemical treatments into the river Besbre, which supplies the artificial lake of Saint-Clément. The treated mine waters contain several radionuclides of the ²³⁸U decay series, including ²³⁸U, ²²⁶Ra and ²¹⁰Pb that are deposited in bottom lacustrine sediments. Assessing sedimentation rates in the lake is required to understand the geochemical mechanisms involved in natural radionuclides deposition and quantify their fluxes at the SWI. Moreover, sedimentation rates are essential for the development of solute transport models, especially for predicting radionuclides and metals behavior in sediment pore waters.

In sedimentary deposits less than 150 years old, ²¹⁰Pb is a

* Corresponding author. E-mail address: arnaud.mangeret@irsn.fr (A. Mangeret). powerful radioactive tracer for environmental investigations including the dating of lacustrine sediment (Appleby and Oldfield, 1978; Etienne et al., 2013; He and Walling, 1996; Lavrieux et al., 2013; Perga et al., 2010). ²¹⁰Pb is generally not in secular equilibrium with its parent radionuclide ²²⁶Ra. The daughter isotope of ²²⁶Ra, ²²²Rn, is exhaled from soils to the atmosphere and decays to ²¹⁰Pb, which attaches to aerosols and deposits on the earth's surface via wet and dry deposition leading to excess ²¹⁰Pb (²¹⁰Pb_{ex}) concentrations (Turekian et al., 1977). In the site studied here, however, the addition of large and variable inputs of ²¹⁰Pb from the mine, diluting the atmospheric ²¹⁰Pb, renders the ²¹⁰Pb_{ex} method unusable.

The artificial radionuclide ¹³⁷Cs is frequently used to confirm sediment radiometric dating (Appleby et al., 1991; Lavrieux et al., 2013). In western Europe, two temporal markers of ¹³⁷Cs input can be distinguished: i) the maximum of fallout atmospheric nuclear bomb tests in 1963–1964, and ii) the Chernobyl accident in 1986 (Sabatier et al., 2014; Schuller et al., 1993, 2002).

In this context, the need of a complementary dating method is fundamental for: i) dating recent sediment less than 30 years old

without significant ¹³⁷Cs activity maxima, and ii) allocating ¹³⁷Cs peaks in sediments when they are detected.

The proposed technique is based on the disequilibrium between ²²⁸Ra and its ²³²Th parent (²²⁸Ra_{xs}) (*i. e.* in addition to supported ²³²Th) observed in recent sedimentary deposits. A simplified version of the ²³²Th decay series is given in Fig. 1.

A few applications of the ²³²Th decay series nuclides for dating lake sediments are reported in the literature. Disequilibrium within ²³²Th series for environmental studies was proposed by Koide et al. (1973) but only for the couple ²²⁸Th/²³²Th, with ²²⁸Ra assumed to be in secular equilibrium with ²³²Th and (ii) the couple ²²⁸Th/²²⁸Ra in marine sediments. Rabouille et al. (2009) uses ²²⁸Th excess in surface for dating marine sediments. More recently, the excess of ²²⁸Ra over ²³²Th was reported for fluvial sediments and probably due to desorption of radium from soil profiles (Olley et al., 1997). The same disequilibria were used in podzolic soils to probe the kinetics of colloid migration (Rihs et al., 2011).

The aim of the present work is to develop and validate a new method for the determination of sediment accumulation rates based on the decay of ²²⁸Ra_{ex} in a granitic, uranium-rich environment. Further, we apply the method on two short cores where no other dating method could be used.

2. Materials and methods

2.1. Site description

The studied area is located in the Massif of Bois Noirs, a part of the Massif Central in France (Fig. 2) characterized by a Hercynian granitic horst. The "Bois Noirs Limouzat" uranium ore body is a hosted-vein deposit associated with important quartz veins (Cuney, 1974). The uranium mining extraction began in 1955 and ceased at the beginning of the 1980's.

Treated waters coming from the former uranium mine deposits are discharged into the river Besbre, which supplies the lake of Saint-Clément, located approximately 20 km downstream. Dissolved 228 Ra in the Besbre waters sampled downstream from the former mining site are similar to those determined in other tributaries (1–3 mBq L⁻¹, unpublished). These results sustain the fact that 228 Ra in the Besbre river are primarily of natural origin.

2.2. Sediment sampling

The two coring sites, C2 (N 46.085597° E 3.688483°) and C4 (N

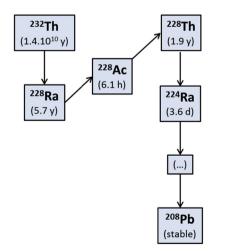


Fig. 1. Simplified decay chain of thorium 232 and his daughter products.

46.086111° E 3.688250°), were located within the deepest body of the lake (Fig. 2).

C4 was the deepest sampling point (13–14 m of overlying water) close to the Saint-Clément dam. The sampling area is crossed by the former river bank, and the sediment coverage is highly variable, following the topography. A set of sediment cores were sampled with an UWITEC[®] hand corer equipped with 60 cm to 3 m long PVC sampling tubes at different depths. The four sediment cores described in this paper, displayed a homogeneous mud composition. The first two cores, 2011C2 and 2013C2, were 195 and 90 cm long, respectively. The other two cores were shorter: 2014C2 (25 cm length), 2014C4 (40 cm length).

Sediment cores were horizontally sliced and stored at 4 $^{\circ}$ C before discrete sampling. In the laboratory, selected sediment slices were dried at 110 $^{\circ}$ C and grounded in an agate mortar, and sealed in polyethylene tubes ready for gamma-counting.

2.3. Sampling of lake's suspended particulate

Two 14 L samples of overlying waters at 1 and 9 m depth were collected with a Ninskin[®] bottle and stored in a polyethylene tank for transportation to the laboratory. Back in the laboratory (less than one hour after sampling), the water samples were mixed and filtered through 0.45 μ m Millipore membrane filters, which were retained for analysis.

2.4. Gamma spectrometry

Aliquots of 6–7 g of sediment samples were measured in the wells of very low background high efficiency Ge detectors (Canberra[©]) at the "Laboratoire Souterrain de Modane" (LSM) in the French Alps (Cazala et al., 2003; Reyss et al., 1995). Protected from cosmic radiations by 1700 m of rock overburden, backgrounds as low as 0.5 counts per minute from 40 keV to 3000 keV were measured. ²¹⁰Pb, ²³⁴Th (assumed in equilibrium with ²³⁸U), ²¹⁴Bi and ²¹⁴Pb (²²⁶Ra), ²²⁸Ac (²²⁸Ra), ²¹²Pb and ²⁰⁸Tl (²²⁸Th), ¹³⁷Cs and ⁷Be were generally analyzed after counting times of one day for sediment samples. Given that the amount of suspended particles recovered after water filtration was low (a few mg in 14 L) the activities of radionuclides were expected to be as low as a few mBq L^{-1} (Cazala et al., 2003; Dominik et al., 1989). Consequently, measurements required 3-4 days to determine activities with a one sigma statistical error lower than 10%. The gamma detectors were calibrated using several standards from IAEA (RGTh-1, RGU-1, 375, Soil 6) and from National Institute of Standard and Technology (NBS4350b and NBS4353). The use of standards for the isotopes of interest measured in similar geometry and weight for the efficiency calibration rule out bias in the measurements.

A specific measurement was performed at LSCE (Gif-sur-Yvette) with a high resolution GEM-FX $Ortec^{\odot}$ detector for a precise quantification of the ²⁴¹Am gamma ray at 59.5 keV in the presence of ²³⁴Th at 63.3 keV.

2.5. Alpha spectrometry

Sediment and suspended particles samples were totally dissolved using HCl, HF and HClO₄ (suprapur Merck[®]). ²²⁹Th and ²³⁶U spikes (Amersham) were added and standard procedures employed for measuring ²³⁸U, ²³⁴U, ²³⁰Th and ²³²Th (Ku and Broecker, 1969). Alpha spectra were obtained by counting in α grid chambers at LSCE.

2.6. Ion coupled plasma-mass spectrometry (ICP-MS) analyses

U and Th concentrations were also measured at the SARM-CRPG

Download English Version:

https://daneshyari.com/en/article/8081467

Download Persian Version:

https://daneshyari.com/article/8081467

Daneshyari.com