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a b s t r a c t

Mathematical model of micro-heterogeneous medium with random deformation and strength properties
of microstructure is developed assuming that the tensor of macroscopic deformations is known for the
structure. Green–Somigliana tensor is used to obtain the formulas for random stress distribution in
microstructure elements. The probability of the stress exceeding the ultimate strength in an element
determines the probability of fracture in this element and the relative micro-damage. The correlation
functions of stochastic microstructure ultimate strength condition are calculated for various types of
stress. Normal distribution is used to calculate the damage. The distribution density can be adjusted
through the stress moments to the fourth order.

Micro-fractions change the composite’s macro modules of elasticity. Therefore, changes the relation-
ship between stress and strain. Setting an increment step on the macro-strain axis, the stress–strain
curve is plotted taking into account changes in composite properties. Stress–strain curves are obtained
for different types of load.

The increase of the factor of safety corresponds with the reduction of microstructure damage permitted
in the design. Critical microstructure damage also depends on the dispersion of the microstructure prop-
erties. It is shown that the microstructure properties of composite significantly influence the behavior of
materials under load and the shape of stress–strain curve. Findings are compared with experiment data.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Stress–strain curves reflect the relationship between stress and
strain in materials under load. With increasing load, the properties
of material change. Even under the elastic deformation, there is
some damage to the material’s microstructure [1–3]. Insignificant
at first, micro-fractures develop, build up and shift the material
into the zone of plastic deformation. Growing damage changes
composite properties and the relationship between stress and
strain.

Calculation of macroscopic composite properties of as a func-
tion of its microstructure is one of the main tasks of the composite
theory [2–4]. Adjustment to the tensor of average elasticity mod-
ules is calculated while taking into account the interaction of
microstructure elements. Methods for calculating the properties
of stochastic composites are improved [5]. This makes it possible
to research a range of new types of composites.

In order to solve the stochastic boundary value problem for mi-
cro-heterogeneous media it is necessary to find the distribution
laws of random strains and stresses in elements of microstructure
[2–4]. Such laws are needed to create statistical theories of defor-
mation and to assess the reliability of materials and construction

elements. Calculation of strain and stress distribution parameters
is associated with significant computational challenges. In practice,
the approximate formulas are used, and therefore the accuracy and
the applicability range of the methods should be assessed [6].

Microstructure ultimate strength condition ties random stres-
ses and ultimate strengths in the microstructure elements. The
probability of stress exceeding the ultimate strength in one ele-
ment determines the probability of failure of this element and
the relative damage at the micro level. Knowing the damage at
each stage of the calculations, the changed deformation properties
of the material can be determined.

Defining increment step for macro strain axis, draw segments of
stress–strain curve taking into account the changed properties on
each interval. Mathematical models used to calculate the deforma-
tion diagram make it possible to explore a wide range of properties
of materials and various types of stresses. The proposed methods
also make it possible to solve the opposite problem – based on a
given stress–strain curve calculate properties of the composite
microstructure with a desired degree of accuracy.

2. Boundary value problem for micro-heterogeneous media

Let us consider a model of micro-heterogeneous medium, con-
taining elements of the first and second orders infinitesimal [3].

0167-8442/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tafmec.2009.08.007

* Corresponding author.
E-mail address: tatiana.volkova1@yahoo.com (T.A. Volkova).

Theoretical and Applied Fracture Mechanics 52 (2009) 83–90

Contents lists available at ScienceDirect

Theoretical and Applied Fracture Mechanics

journal homepage: www.elsevier .com/locate / tafmec

http://dx.doi.org/10.1016/j.tafmec.2009.08.007
mailto:tatiana.volkova1@yahoo.com
http://www.sciencedirect.com/science/journal/01678442
http://www.elsevier.com/locate/tafmec


Elements of the first order infinitesimal D1V have deterministic
macroscopic mechanical properties. The medium is macroscopi-
cally homogeneous and isotropic. The size D1V is approximately
equal dL, where L is a characteristic dimension of the considered
part, and d� 1. The size of the microstructure elements D2V is
by 2–3 orders of magnitude smaller than the size of D1V. The unit
dimension can be chosen as the size of a grain or a fraction of that
size. Grain composites have spherical regions of statistical depen-
dence of microstructure properties. The distance at which appro-
priate correlation functions attenuate defines the radius of the
sphere.

Consider the random modulus of volumetric strain, K(X), the
shear modulus, G(X), the random Young’s modulus, E(X) at a point
X = (x1,x2,x3). Corner brackets denote the averaging of random vari-
ables. The means of distribution or modules are marked E, K, and G.

E ¼ hEðXÞi; K ¼ hKðXÞi; G ¼ hGðXÞi: ð1Þ

Tensor of random elastic modules H(X) can be expressed
through the modules K(X) and G(X) or E(X) and the Poisson’s ratio
m. Also included are the volumetric component V and the deviation
component D of the fourth rank unit tensor. Variations of tensor of
microstructure elastic modules hH0(X)i = H(X)� hH(X)i will de-
pend on variations of the elastic modules E0(X), K0(X), and G0(X).
As a result, the two notations of the tensor H(X) are obtained.

HðXÞ ¼ 3KðXÞV þ 2GðXÞD; H0ðXÞ ¼ 3K0ðXÞV þ 2G0ðXÞD; ð2Þ

or

HðXÞ ¼ EðXÞ 1
1� 2m

V þ 1
1þ m

D
� �

;

H0ðXÞ ¼ E0ðXÞ 1
1� 2m

V þ 1
1þ m

D
� �

: ð3Þ

It is assumed that for the entire structure and its elements D1V
the solution of macroscopic boundary problem and the tensor of
macroscopic strains e are known.

For macroscopically isotropic stochastic grain composites, con-
sider the problem of mechanics of micro-heterogeneous media
that links the random modules of elasticity tensor H(X), micro-
structure strains e(X) and stresses r(X). Random microstructure
stresses and strains are determined through the stochastic bound-
ary problems and the Green’s tensor [3,6]. The element D1V con-
tains a large enough number of elements of the second order
infinitesimal to allow for application of the Green–Somigliana ten-
sor Gij (X, Y). In this case, the integration occurs over an infinite re-
gion surrounding the point X.

Operator equation for the main stochastic boundary problem in
terms of strains [3,6] is:

e0
ijðXÞ ¼

ZZZ
Guði;jÞwðX;YÞH0

uwabðYÞeabðYÞdV ; ð4Þ

i, j, a, b, u, w = 1, 2, 3.
A comma before the index denotes the differentiation over the

corresponding variable: f,i = @f/@yi, f,ij = @2f/@yi@yj. From here on
the repeated Greek indexes denote summation.

Operator Eq. (4) contains second derivatives of tensor G(X,Y).

Gmði;jÞnðX; YÞ ¼
1þ m
4pE

ðdmir�1;jn þ dmjr�1;inÞ �
1þ m

8pEð1� mÞ r;ijmn;

for r2 ¼ ðx1 � y1Þ
2 þ ðx2 � y2Þ

2 þ ðx3 � y3Þ
2
:

ð5Þ

For convenience, tensor Gm(i,j)n(X,Y) can be represented in the
matrix form eGpqðX;YÞ. Indexes will be converted ij ? p,nm ? q
according to the rule: 11 ? 1, 22 ? 2, 33 ? 3, 23 ? 4, 31 ? 5,
12 ? 6.eGpqðX;YÞ ¼ Gmði;jÞnðX;YÞ for p; q ¼ 1;2; . . . ;9: ð6Þ

Double scalar product of tensors, the convolution over the two
indices denotes «��».

ðC � �eÞij ¼ Cij abeab; ðG � �CÞij km ¼ Gij abCab km: ð7Þ

In vector notation, the operator Eq. (4) takes the form:

e0
i ðXÞ ¼

ZZZ eGiaðX;YÞH0
abðYÞebðYÞdV ;

for i;a; b ¼ 1;2; . . . ;6:
ð8Þ

or

e0ðXÞ ¼
ZZZ eGðX;YÞ � �H0ðYÞ � �eðYÞdV : ð9Þ

Eq. (9) is solved with method of successive approximations. The
distribution laws for the components of the tensor e0(X) at step
n + 1 are found through the same at the step n for tensor e(X). As
a first approximation, use microstructure strains e(X) averaged
over volume e = e.

e0ðXÞðnþ1Þ ¼
X
Y–X

eGðX;YÞ � �H0ðYÞ � �eðYÞðnÞdV ;

eðXÞ ¼ e0ðXÞ þ e:
ð10Þ

The region of integration is divided into densely packed
spherical elements V0,V1, . . . Vn . . . , the diameters of which are
equal to an average size of microstructure elements. In the oper-
ator (9), replace the integration with the summation over the
nodes that are the centers of elementary volumes. The central
region V0 includes the considered point X and provides the sin-
gular component of the operator. Summation of the regular com-
ponents takes place over points Y surrounding the central point
X. Depending on the required accuracy, consider several spheri-
cal layers around the center point. The calculation over the inte-
gration grid nodes is carried out within each cycle of strain
approximations. This process produces an error associated with
the need to limit the number of approximations and the number
of layers surrounding the considered points. Convergence and
accuracy of the method of successive approximations depends
on the attenuation rate of microstructure properties moment
functions [6]. In particular, it is shown that the value of variation
of microstructure properties and the Poisson’s ratio of the com-
posite influence the convergence of the method.

Fig. 1 depicts the dependence of computation error D on the
coefficient of variation of Young’s modulus k of material for
m = 0.3. With small variations, it is possible to stop at a first approx-
imation, but with the increase of the coefficient of variation k the

Fig. 1. Relative error D(k) vs. Coefficient of variations k with n approximations for
strains.
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