Contents lists available at ScienceDirect

Journal of Environmental Radioactivity

journal homepage: www.elsevier.com/locate/jenvrad

ALL ENDING E

Iodine isotopes in precipitation: Four-year time series variations before and after 2011 Fukushima nuclear accident

Sheng Xu ^{a, c, *}, Luyuan Zhang ^{b, d}, Stewart P.H.T. Freeman ^a, Xiaolin Hou ^b, Akira Watanabe ^c, David C.W. Sanderson ^a, Alan Cresswell ^{a, c}, Katsuhiko Yamaguchi ^c

^a Scottish Universities Environmental Research Center, East Kilbride, G75 0QF, UK

^b Center for Nuclear Technologies, Technical University of Denmark, 4000, Roskilde, Denmark

^c Fukushima University, Fukushima, 960-1296, Japan

^d SKLLQG, Xi'an AMS Center, Institute of Earth Environment, CAS, Xi'an 710061, China

ARTICLE INFO

Article history: Received 13 October 2015 Received in revised form 11 February 2016 Accepted 11 February 2016 Available online 23 February 2016

Keywords: Fukushima-derived ¹²⁹l ¹²⁹l/¹²⁷l Long-term variation Rainwater Fukushima nuclear accident

ABSTRACT

Rainwater samples were collected monthly from Fukushima, Japan, in 2012–2014 and analysed for ¹²⁷I and ¹²⁹I. These are combined with previously reported data to investigate atmospheric levels and behaviour of Fukushima-derived ¹²⁹I before and after the 2011 nuclear accident. In the new datasets, ¹²⁷I and ¹²⁹I concentrations between October 2012 and October 2014 varied from 0.5 to 10 µg/L and from 1.2×10^8 to 6.9×10^9 atoms/L respectively, resulting in ¹²⁹I/¹²⁷I atomic ratio ranges from 3×10^{-8} to 2×10^{-7} . The ¹²⁷I concentrations were in good agreement with those in the previous period from March 2011 to September 2012, whereas the ¹²⁹I concentrations and ¹²⁹I/¹²⁷I ratios followed declining trends since the accident. Although ¹²⁹I concentrations in five samples during the period of 2013–2014 have approached the pre-accident levels, ¹²⁹I concentrations in most samples remained higher values in winter and spring-summer. The high ¹²⁹I levels in winter and spring-summer are most likely attributed to local resuspension of the Fukushima-derived radionuclide-bearing fine soil particles deposited on land surfaces, and re-emission through vegetation taking up ¹²⁹I from contaminated soil and water, respectively. Long-term declining rate suggests that contribution of the Fukushima-derived ¹²⁹I to the atmosphere would become less since 2014.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

After the accident of Fukushima Dai-ichi nuclear power plant (FDNPP) caused as a consequence of the tsunami resulted from the giant earthquake on March 11, 2011, the rainwater samples were monthly collected from Fukushima City, and analysed for ¹²⁷I and ¹²⁹I to assess the atmospheric level and behaviour of the Fukushima-derived ¹²⁹I (Xu et al., 2013). The ¹²⁹I concentration of 10⁸ atoms/L in 2010 before the accident dramatically increased about four orders of magnitude to 7.6×10^{11} atoms/L in March 2011 immediately after the accident with a ¹²⁹I/¹²⁷I ratio up to 6.9×10^{-5} . Afterwards the ¹²⁹I concentrations in precipitation decreased exponentially, with several fluctuations, to ~4 × 10⁸ atoms/L in November 2012. Such a temporal fluctuation has been explained as a result of continuous removal of the ¹²⁹I released to the atmosphere in the Fukushima accident combined with re-suspension of

E-mail address: s.xu@suerc.gla.ac.uk (S. Xu).

the Fukushima-derived ¹²⁹I deposited on the land surface. In comparison with the ¹²⁹I pre-accident level of $(1.7 \pm 0.8) \times 10^8$ atoms/L averaged from rainwater samples between November 2010 and February 2011, the value of ¹²⁹I concentration in November 2012 (3.6 \times 10⁸ atoms/L) remained more than two times higher. Therefore, it is necessary to understand whether the Fukushimaderived ¹²⁹I in atmosphere has subsequently declined to preaccident levels. If this is a case, it is also worthwhile to investigate temporal variations since December 2012, because later elevated ¹²⁹I events may be an indicator of new releases associated with the decommission of FDNPP and resuspension caused by natural processes and/or decontamination (Hirose, 2013; Tsuruta et al., 2014). This work aims to extend the investigation on levels and behaviour of Fukushima-derived ¹²⁹I in the atmosphere by analysis of a further 2-year time-series of precipitation samples collected from Fukushima.

2. Materials and methods

The rainwater samples were monthly collected at campus of the

^{*} Corresponding author. Scottish Universities Environmental Research Center, East Kilbride, G75 0QF, UK.

Fukushima University $(37^{\circ}41'00''N, 140^{\circ}27'16''E)$, located about 60 km northwest of the FDNPP. Detailed description on rainwater sample collection and analytical methods for ¹²⁷I and ¹²⁹I has been described previously (Xu et al., 2013).

The ¹²⁷I concentrations in the precipitation samples were determined using inductively coupled plasma mass spectrometer at the Technical University of Denmark. Repeat analysis of a reference material indicates that the typical uncertainty of ¹²⁷I concentrations is about 1%.

A modified method was used to separation of iodine from precipitation and accelerator mass spectrometry measurement of ¹²⁹I. Firstly, instead of NaOH used previously, K₂S₂O₅ is used to treat the sample in this study in order to completely convert organic iodine in rainwater to inorganic form (Dang et al., 2013). Secondly, instead of ¹²⁹I⁵⁺ ion detection at 3 MV terminal voltage in previous study, the ¹²⁹I³⁺ was chosen for detection in this study so that the ion transmission can be significantly improved for the low-level ¹²⁹I determination. In this operational condition, interference of ⁹⁷Mo⁴⁺ (disassociated from the injected MoO₂⁻) to the measurement of ¹²⁹I⁵⁺ can be removed. Instead, there are two main interferences of ⁸⁶Sr²⁺ and ⁴³Ca⁺ (e.g., disassociated from injected SrCO₂⁻ and CaClO₃⁻ or CaSO₃⁻, respectively) to ¹²⁹I³⁺, but they can be completely separated using the gas ionization detector, resulting in no need of any interference corrections.

The measured ¹²⁹I/¹²⁷I ratios is normalized to a standard with ¹²⁹I/¹²⁷I ratio of 1.098 × 10⁻¹⁰ prepared by dilution of the NIST 4949B standard reference material with ¹²⁷I carrier (Woodward) with ¹²⁹I/¹²⁷I ratio of 10⁻¹⁴. The ¹²⁹I/¹²⁷I ratios in the prepared target of rainwater samples are in range of 10⁻¹²–10⁻¹¹, which are more than one order of magnitude higher than those of procedure blank (10⁻¹³). Repeat measurements of a secondary standard with ¹²⁹I/¹²⁷I ratio of 1.063 × 10⁻¹¹ indicated better than 3% precision and accuracy.

3. Results

Table 1 lists ¹²⁷I and ¹²⁹I concentrations, and ¹²⁹I/¹²⁷I ratios newly measured in rainwater samples collected from December 2012 to October 2014 together with previously reported ¹²⁷I data from March 2011 to September 2012 and ¹²⁹I data from November 2010 to November 2012 (Xu et al., 2013). Fig. 1 shows temporal variations of ¹²⁷I and ¹²⁹I concentrations and ¹²⁹I/¹²⁷I ratios in the rainwater samples from the whole period from November 2010 to October 2014.

The newly measured ¹²⁷I concentrations between October 2012 and October 2014 varied from 0.5 μ g/L in July 2014 to 10 μ g/L in March 2013, which is consistent with the previous period between March 2011 and September 2012 ranging from 0.8 to 2.3 μ g/L. Combination of the two datasets gives an average ¹²⁷I concentration of 1.6 \pm 1.5 μ g/L in the period between March 2011 and October 2014. As shown in Fig. 2, these data fall into the reported range in the literature (0.2–12 μ g/L, Aldahan et al., 2009). Such natural variation of ¹²⁷I is reflected by rainwater samples from Japan (Muramatsu and Ohmomo, 1986; Xu et al., 2016a), China (Zhang et al., 2011), Europe (Buraglio et al., 2001; Reithmeier et al., 2005; Hou et al., 2009; Gómez-Guzmán et al., 2012) and USA (Moran et al., 1999). Overall, there is no apparent trend on temporal variation of ¹²⁷I concentration in Fukushima through the whole period.

The newly ¹²⁹I concentrations in rainwater samples between December 2012 and October 2014 varied from 1.2×10^8 atoms/L in October 2014 to 6.9×10^9 atoms/L in March 2013. The highest value is comparable with those in August–September 2011, whereas the lowest value is consistent with those observed before the accident. The ¹²⁹I concentrations in 2012–2014 showed a declining trend after the accident, but were significantly lower compared to the previous period in 2011–2012. Overall, as shown in Fig. 2, the ¹²⁹I concentrations in precipitation from Fukushima are comparable with those observed in North Europe (Germany, Denmark, Sweden) and South Europe (Spain), but significantly higher than those from USA (Moran et al., 1999). The elevated ¹²⁹I concentrations in Europe have been attributed to contributions from the nuclear reprocessing plants (Aldahan et al., 2009; Hou et al., 2009; Gómez-Guzmán et al., 2012).

The newly measured $^{129}I/^{127}I$ atomic ratios in this study vary within relatively narrow bands from 1.3×10^{-8} to 2.0×10^{-7} . The lowest $^{129}I/^{127}I$ ratio of 1.3×10^{-8} observed in October 2014 is consistent with those observed in pre-accident soil samples nearby (Matsunaka et al., 2015). If the average ^{127}I in the whole period 1.6 \pm 1.5 μ g/L as described above can be assumed for the pre-accident rainwaters, the corresponding pre-accident $^{129}I/^{127}I$ atomic ratios would be $(1-4)\times10^{-8}$. Clearly, although six samples collected in the period of 2012–2014 showed $^{129}I/^{127}I$ ratios $(3-4)\times10^{-8}$ consistent with the pre-accident values, $^{129}I/^{127}I$ ratios values.

Overall, ¹²⁹I and ¹²⁹I/¹²⁷I show gradually declining trends through the whole period (Fig. 1b and c). The ¹²⁹I concentrations are averagely 1×10^{11} atoms/L in 2011 (since the accident), 2×10^{9} atoms/L in 2012, 6×10^{8} atoms/L in 2013 and 3×10^{8} atoms/L in 2014, whereas the corresponding ¹²⁹I/¹²⁷I ratios are 2×10^{-5} in 2011, 3×10^{-7} in 2012, 9×10^{-8} in 2013 and 6×10^{-8} in 2014. In addition, a roughly seasonal variation on ¹²⁹I and ¹²⁹I/¹²⁷I can be observed. The high ¹²⁹I concentrations and ¹²⁹I/¹²⁷I ratios are generally observed in winter and spring-summer, whereas the low values are found in autumn.

Table 1 also lists the calculated ¹²⁷I and ¹²⁹I depositions by combining the precipitation with ¹²⁷I and ¹²⁹I concentrations. The ¹²⁷I and ¹²⁹I depositions are in range of 0.7–14 μ g/m²/d and 2 × 10⁸–1 × 10¹¹ atoms/m²/d, respectively. With the exception of early periods of 2011, both ¹²⁷I and ¹²⁹I depositions overlap those observed in North Europe (0.9–4.1 μ g/m²/d for ¹²⁷I and (8–80) × 10⁸ atoms/m²/d for ¹²⁹I, Aldahan et al., 2009) and South Europe ((0.1–8) × 10⁸ atoms/m²/d for ¹²⁹I, Gómez-Guzmán et al., 2012).

One of the most striking features in the present dataset is that both ¹²⁷I and ¹²⁹I concentrations in March 2013 are higher than those in previous and later months by one order of magnitude. The high ¹²⁷I and ¹²⁹I concentrations coincide with the lowest precipitation in this sample (Table 1). The similar high ¹²⁷I and ¹²⁹I concentrations are also observed in sample collected in August 2012 with the relatively low precipitation. In contrast, the relatively low iodine concentrations (in particular ¹²⁷I) are observed in other samples with high precipitation. This is mainly attributed to the washing out and trapping process of iodine during precipitation. Iodine in the atmosphere presents in different forms including particle associated, inorganic species (I₂, HI, HIO, etc.) and organic gaseous species (e.g., alkyl-iodide). Of them particle associated iodine and inorganic species of iodine are easily trapped by droplet of rain or during the formation of cloud, causing a high removal rate of iodine from the atmosphere in the beginning of rainfall event. While organic iodine species is not easily trapped or converted to soluble iodine in the droplet of rain, therefore removed from atmosphere slowly. This causes a high iodine concentration in a low presentation event compared to a high precipitation event which iodine in the rainwater is highly diluted. The similar pattern has been previously observed in a precipitation in USA (Moran et al., 1999).

Download English Version:

https://daneshyari.com/en/article/8081931

Download Persian Version:

https://daneshyari.com/article/8081931

Daneshyari.com