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Computational methods for model reliability assessment
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Abstract

This paper investigates various statistical approaches for the validation of computational models when both model prediction and

experimental observation have uncertainties, and proposes two new methods for this purpose. The first method utilizes hypothesis testing

to accept or reject a model at a desired significance level. Interval-based hypothesis testing is found to be more practically useful for

model validation than the commonly used point null hypothesis testing. Both classical and Bayesian approaches are investigated. The

second and more direct method formulates model validation as a limit state-based reliability estimation problem. Both simulation-based

and analytical methods are presented to compute the model reliability for single or multiple comparisons of the model output and

observed data. The proposed methods are illustrated and compared using numerical examples.

r 2007 Elsevier Ltd. All rights reserved.
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1. Motivation

Various types of uncertainties and errors are involved in
computational model predictions that attempt to capture
the behavior of real physical systems. The uncertainties
arise due to model form inadequacies, lack of sufficient
data, and inherent variability in the physical properties of
the system. The corresponding experimental data needed to
validate these computational models are also affected by
experimental variability, measurement errors, etc. Model
validation under uncertainty thus reduces to comparing
two or more uncertain quantities.

Validation assessments can be made using qualitative
graphical methods or quantitative statistical techniques;
the focus of this paper is on the latter. Depending on the
nature or form of model output and experimental data,
model validation may involve comparison of means or
variances or even two probability distributions. A valida-
tion metric would then provide a quantitative assessment
of the agreement between prediction and observation [1].
While a validation method should be able to provide an

answer to the question whether the computational model
accurately represents the reality, it should also support
whether the degree of confidence with which we accept or
reject a model is adequate for the intended model use. This
paper investigates the ability of several validation metrics
to address both accuracy and adequacy requirements for
engineering applications.
Various types of quantitative metrics have been pro-

posed over the years for the validation of computational
models. An attempt to collect and discuss various
validation metrics was made by Oberkampf and Barone
[2]. Sargent [3] and Balci [4] outlined the general framework
for model verification, validation and accreditation by
defining various terminologies. Coleman and Stern [5]
combined various types of errors and uncertainties arising
in computational fluid dynamics applications, and pro-
posed a validation metric requiring the prediction error to
be small. A comparison error E is defined as the actual
difference between prediction and data. Then the uncer-
tainty associated with that error is computed through a
combination of numerical errors (ESN), modeling error
(ESMA), data or measurement error (ED), and the
uncertainties in previous data used to build the model
(ESPD). All these errors were assumed to be independent of
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each other and were combined linearly. The term
uncertainty has been used synonymously with standard
deviation in that paper. Thus, the total uncertainty in the
comparison error or the standard deviation of E is
estimated as

sE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2SPD þ s2SMA þ s2SN þ s2D

q
. (1)

The model prediction is said to be inadequate if |E|osE.
The confidence with which we accept or reject a model
prediction is not reported with this metric.

Since the metric proposed in Eq. (1) does not give
any measure of statistical significance of the result,
hypothesis testing using classical statistics was found to
be more appropriate for comparing data with prediction.
For given prediction and data vectors xmodel and xexp, a
validation metric based on the Mahalanobis distance was
proposed [6]:

d2
¼ ðxmodel � xexpÞ

T
ðcovðxmodelÞ þ covðxexpÞÞ

�1
ðxmodel � xexpÞ.

(2)

The model prediction is said to be close to the data when
d2 is less than some critical value wa

2(n), where n is the
number of data points or predictions and a is the
significance level. The corresponding p-value is computed
as P(d24dobs

2 ). The meaning and interpretation of p-value
will be discussed later in Section 2. For the distance metric
in Eq. (2) to follow a w2 distribution, both the model output
and field response have to follow normal distribution.
When model and field responses are not normal, they both
can be transformed into normal space.

Classical hypothesis testing methods have been explored
for model validation assessment in recent literatures [7,8].
Zhang and Mahadevan [9] applied Bayesian hypothesis
testing and the Bayes factor metric for validation of limit
state-based reliability prediction models. Suppose the
model predicts a failure probability of p for a physical
system based on the knowledge of various uncertainties. If
we observed k failures out of n tests, then the validation
metric or Bayes factor in this case is derived as
B ¼ ðnþ 1Þðn!=ðn� kÞ!k!Þpkð1� pÞn�k. If B41.0, we con-
clude that the data favor the model prediction. Recently
the method has been extended to the validation of more
generalized model outputs, both univariate and multi-
variate [10]. The validation metric in that case is the ratio
of posterior to prior densities of the model prediction.

Other Bayesian approaches for model validation have
focused more on calibration of the model using the data
and providing posterior probability intervals rather than a
direct assessment of the degree of match between predic-
tion and observation [11,12].
Some alternatives to p-values and Bayes factors are also

available in the literature. One approach is the use of
decision-theoretic utility or loss functions [13]. Denoting d0
as the decision to accept the null hypothesis that model
prediction and data are equal and d1 as the decision to
accept the alternative, one can define the utility function
u(di, y) of choosing di when y is the parameter we wish to
validate. Using the Bayesian approach, having observed
the data x, the decision d1 is the optimal decision if and
only if E[u(d1, y)�u(d0, y)jx]40. The difference in the
utility functions is usually chosen as a squared loss function
or an absolute error metric [14]. Recently, Jiang and
Mahadevan [15] have developed a Bayesian decision-
making methodology for computational model validation,
considering the risk of using the current model, data
support for the current model, and cost of acquiring new
information to improve the model.
There are also other subjective ‘effect size’ estimators of

practical significance that have been defined as alternatives
to p-values. These measures of association or correlation
[16,17] have not become popular in the validation
community since they are only qualitative indicators of
difference between model and data and do not provide a
quantitative measure of evidence for or against the null
hypothesis. Spearman’s rank correlation [18] is sometimes
used as a correlation indicator between data and predic-
tion.
This paper explores two statistical methods for model

validation: (a) hypothesis testing and (b) limit state-based
reliability analysis. Section 2 discusses point-null testing
using classical and Bayesian statistics. The concept of
p-value is discussed in detail for its use as a validation
metric. In Section 3, a more practical interval-based
hypothesis testing is proposed as an alternative to point
null testing. In Section 4, a more direct approach that
formulates model validation as a reliability analysis
problem is proposed. The probability that the difference
between model prediction and data is within a given
threshold is calculated for univariate and multivariate
comparisons. The proposed methodologies are illustrated
and compared through numerical examples.
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Nomenclature

A2 Anderson Darling statistic
a significance level
B Bayes factor
C posterior probability of null hypothesis
c reliability requirement
D dissipation energy

e accuracy requirement
H0 null hypothesis
Ha alternative hypothesis
LN lognormal distribution
N normal distribution
n sample size
r model reliability
s2 sample variance
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