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a b s t r a c t

The diffusion and distribution coefficients are important parameters in the design of barrier systems
used in radioactive repositories. These coefficients can be determined using a two-reservoir configura-
tion, where a saturated porous medium is allocated between two reservoirs filled by stagnant water. One
of the reservoirs contains a high concentration of radioisotopes. The goal of this work is to obtain an
analytical solution for the concentration of all radioisotopes in the decay chain of a two-reservoir
configuration. The analytical solution must be obtained by taking into account the diffusion and sorp-
tion processes. Concepts such as overvalued concentration, diffusion and decay factors are employed to
this end. It is analytically proven that a factor of the solution is identical for all chains (considering a time
scaling factor), if certain parameters do not change. In addition, it is proven that the concentration
sensitivity, due to the distribution coefficient variation, depends of the porous medium thickness, which
is practically insensitive for small porous medium thicknesses. The analytical solution for the radioiso-
tope concentration is compared with experimental and numerical results available in literature.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The determination of diffusion and distribution coefficients is
important in the design of barrier systems that are used in radio-
active repositories. Among the available experimental setups, the
two-reservoir configuration is commonly used to determine
diffusion and distribution coefficients. This configuration consists
of a saturated porousmedium surrounded by two reservoirs: one of
the reservoirs, called injective reservoir (IR), contains a high con-
centration of radioisotopes and the other, called diffusive reservoir
(DR), is initially free of radioisotopes.

The goal of this work is to present an analytical solution for the
radioisotope concentration in the two reservoir configuration. The
analytical solution must be obtained by taking into account the

diffusion and sorption processes. It is demonstrated that the solu-
tion has a factor that is invariant in time.

There are at least three ways of analyzing a two-reservoir
configuration: a) analytical, b) experimental and c) finite element
methods (FEM). Chen et al. (2012) found radioisotope concentra-
tions and the diffusion coefficient using multi-compartment
methods. Moridis (1999) obtained analytical solutions for the
diffusion, sorption and decay equations of radioisotope concen-
trations in the Laplace domain. Guzm�an et al. (2014), employed the
finite element method (FEM) for determining diffusion and distri-
bution coefficients. Lü and Ahl (2005) and Lü and Viljanen (2002)
derived an analytical expression for the diffusion coefficient in
the steady state. P�erez Guerrero et al. (2009, 2010) found an
analytical expression for the concentration using classical integral
transform techniques. An approximated analytical solution for the
concentration in the diffusive reservoir is obtained in the work of
Crank (1975) using a separation of variables technique. Shackelford
(1991) reviews classical methods aimed at finding diffusion
coefficients.

Alongside the analytical and numerical methods, experimental
methods are a powerful tool for determining diffusion and

Abbreviations: IR, Injective reservoir; DR, Diffusive reservoir; DC, Diffusion co-
efficient; DIC, Distribution coefficient.
* Corresponding author. Tel.: þ52 55 53189047; fax: þ52 55 53947378.

E-mail address: maestro_juan_rafael@hotmail.com (J. Guzman).

Contents lists available at ScienceDirect

Journal of Environmental Radioactivity

journal homepage: www.elsevier .com/locate/ jenvrad

http://dx.doi.org/10.1016/j.jenvrad.2014.10.003
0265-931X/© 2014 Elsevier Ltd. All rights reserved.

Journal of Environmental Radioactivity 139 (2015) 163e170

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:maestro_juan_rafael@hotmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jenvrad.2014.10.003&domain=pdf
www.sciencedirect.com/science/journal/0265931X
http://www.elsevier.com/locate/jenvrad
http://dx.doi.org/10.1016/j.jenvrad.2014.10.003
http://dx.doi.org/10.1016/j.jenvrad.2014.10.003
http://dx.doi.org/10.1016/j.jenvrad.2014.10.003


distribution coefficients. Yamaguchi and Nakayama (1998), exper-
imentally found the diffusion coefficient (DC) and the distribution
coefficient (DIC) for uranium-233 and plutonium-239 of Inada
granite. Yamaguchi et al. (1997) determined DC and DIC for the
uranyl ion and Yamaguchi et al. (1993) for strontium in Inada
granite. Aldaba et al. (2010) determined DC and DIC of cesium and
strontium in unsaturated soils from Spain. García-Gutierrez et al.
(2001) established DC and DIC of strontium and Eriksen et al.
(1999) obtained DC and DIC of cations Naþ, Csþ, Co2þ, and Sr2þ in
compacted bentonite. DC and DIC of tritiated water in cement
pastes were obtained in the work of Tits et al. (2003).

An important concept that simplifies the analysis of the decay
chain is the overvalued concentration (Guzm�an et al., 2014). An
overvalued concentration is an estimation of the maximum of the
actual radioisotope concentration, which is obtained by replacing
the molecular diffusion and distribution coefficients by the
maximum value of the molecular diffusion coefficient and the
minimum distribution coefficient of all the isotopes in the decay
chain, respectively. Since the overvalued radioisotope concentra-
tion is greater than its actual concentration, then, if the estimated
overvalued concentration does not harm human health, then the
real concentration does not do it either. In Guzm�an et al. (2014), it
is shown that such overvalued concentration for any isotope of the
decay chain and the actual concentration for the first isotope can
be factorized in two terms: a decay factor that describes decay
without diffusion, and a diffusion factor, which describes diffusion
without decay. Equation for the decay factor is solved analytically
whereas the diffusion factor is obtained numerically by means of
FEM.

In present work, the diffusion factor is determined analytically
by using a separation of variables technique (Fourier method). For
validation purposes, the obtained analytical solution is compared
with the numerical solution obtained by Guzm�an et al. (2014) and
with the experimental data from Yamaguchi et al. (1998). It is
shown that the diffusion factor is invariant in time, that is, the
factor is the same for all the decay chain (considering a time scaling
factor), provided that the same dimensions, porosities and distri-
bution factors are employed. Moreover, it is demonstrated analyt-
ically that the diffusion factor is practically insensitive to the
distribution coefficient variation if the porous medium thickness is
small enough.

The advantages and applications of the analytical solution are:
1) they provide rigorous and sound solutions that become very
useful for practical design and data analysis problems. Indeed,
analytical methods provide explicit functions of parameters, lead-
ing to easy application of optimization tools and data analysis.
Moreover, analytical functions may significantly reduce computa-
tional costs. For instance, finite-element approaches require tailor-
made software and heavy computer resources (memory and cpu),
whereas an analytical solution can even be treated and analyzed
without a computer in many cases. 2) The demonstration of the
time invariance of the diffusion factor allows the easy determina-
tion of the concentrations and distribution and diffusion co-
efficients using a time rescaling. 3) It has also been proven that the
diffusion factor is almost insensitive to the distribution coefficient
variation in situations where the porous medium thickness is small,
whereas for awide thickness, the effect is opposite. This means that
the experimental determination of the diffusion coefficient can be
easily obtained using thin porous media.

2. Model

In order to simplify the analysis, the half life of the radioisotope
is considered large enough so that the isotope decay can be
neglected. The isotope decay is considered in Section 5.

Consider a cylinder S with a cross section of an arbitrary form
and an area A and a height l, as illustrated in Fig. 1. The cylinder is
filled with an absorbing porous material and an incompressible
fluid (water), which is stagnated in a homogeneous saturated
porous medium. The dissolved-in-water radioisotope can be
absorbed by the porous medium. Two reservoirs SIR and SDR of
arbitrary geometry and volumes VIR and VDR respectively, are
connected by a cylinder S. The reservoirs SIR and SDR are filled with
water and the dissolved radioisotope. Mixing mechanisms are
mounted inside the reservoirs, such that the isotope concentrations
cIRðtÞ and cDRðtÞ are maintained constant throughout the entire
volumes of the reservoirs SIR and SDR. The isotope penetrates from
one cavity to the other one through the absorbing porous material
inside cylinder S. The dynamics of penetration is described by the
diffusion and absorption equation (Yamaguchi et al., 1993):

a
vc
vt

¼ De
v2c
vx2

(1)

where cðx; tÞ is the concentration of the radioisotope per unit vol-
ume of water at the position x and time t in the porous medium; De

is the effective diffusion coefficient of the radioisotope; a is the
capacity factor in region S ¼ fx : 0 � x � lg. The effective diffusion
coefficient De is given by:

De ¼ qGDm (2)

and, the capacity factor a is:

a ¼ qþ Kr (3)

where, q and r are the porosity and bulk density of the porous
medium, respectively; Dm and K are the molecular diffusion and
distribution coefficients of the radioisotope, respectively; G is the
tortuosity factor.

The boundary conditions for Equation (1) consist of the flux
continuity through the boundary separating region SIR from S and
region SDR from S, i.e., at points x ¼ 0 and x ¼ l:
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and the concentration continuity on the same surfaces
(boundaries):

cIRðtÞ ¼ cjx¼0; cDRðtÞ ¼ cjx¼l (5)

Also the radioisotope concentration in the porous region S
should satisfy the following initial condition:

cðx;0Þ ¼ f ðxÞ (6)

where, the initial conditions for the radioisotope concentrations in
regions SIR and SDR have the form:

cIRjt¼0 ¼ f ð0Þ; cDRjt¼0 ¼ f ðlÞ (7)

due to the continuity conditions (5) and (6).

3. Analytical solution

3.1. Solution methodology

First, it can be noticed that concentrations cIRðtÞ and cDRðtÞ can
be excluded from conditions (4) and (5) by substituting (5) into (4).
As a result the following boundary conditions for the isotope con-
centration cðx; tÞ in the porous medium can be obtained:

J. Guzman et al. / Journal of Environmental Radioactivity 139 (2015) 163e170164



Download English Version:

https://daneshyari.com/en/article/8082589

Download Persian Version:

https://daneshyari.com/article/8082589

Daneshyari.com

https://daneshyari.com/en/article/8082589
https://daneshyari.com/article/8082589
https://daneshyari.com

