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a b s t r a c t

This article presents a new globalelocal hybrid coarse-mesh finite difference (HCMFD) method for
efficient parallel calculation of pin-by-pin heterogeneous core analysis. In the HCMFD method, the one-
node coarse-mesh finite difference (CMFD) scheme is combined with a nodal expansion method (NEM)
ebased two-node CMFD method in a nonlinear way. In the global-local HCMFD algorithm, the global
problem is a coarse-mesh eigenvalue problem, whereas the local problems are fixed source problems
with boundary conditions of incoming partial current, and they can be solved in parallel. The global
problem is formulated by one-node CMFD, in which two correction factors on an interface are introduced
to preserve both the surface-average flux and the net current. Meanwhile, for accurate and efficient pin-
wise core analysis, the local problem is solved by the conventional NEM-based two-node CMFD method.
We investigated the numerical characteristics of the HCMFD method for a few benchmark problems and
compared them with the conventional two-node NEM-based CMFD algorithm. In this study, the HCMFD
algorithmwas also parallelized with the OpenMP parallel interface, and its numerical performances were
evaluated for several benchmarks.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Accurate analysis of a nuclear reactor core is needed to maxi-
mize the core performance and to minimize the uncertainties used
in the safety analysis of the reactor system. Currently, the so-called
two-step method is exclusively used for the analysis of light water
reactor (LWR) cores. In the conventional two-step method, fuel
assemblies or subassemblies are analyzed by the accurate transport
method to determine homogenized few-group constants; this is
followed by a nodal analysis of the three-dimensional whole core
using the diffusion theory method with the homogenized group
constants [1,2]. In spite of the successful application of two-step
procedures in LWR core analysis, it is still necessary to improve the
accuracy of conventional two-step methods to minimize the core
design uncertainties of both modern LWRs and the more chal-
lenging advanced LWR designs.

Recently, to improve the accuracy of reactor core design and
analysis, significant efforts have been made for the development of
direct whole-core transport calculations without the preanalysis of
the lattice [3e7]. Although this whole-core transport approach can
provide accurate results, it is very costly in terms of computing time
and memory requirements. Another possible way to improve the
accuracy of the reactor analysis is to do a pin-by-pin core analysis,
in which only the small fuel pins are homogenized, and the three-
dimensional core analysis is still performed by low-order methods
such as diffusion theory [1,2,8e10]. Therefore, the pin-by-pin core
analysis can directly provide detailed core power distributions
without any need to use the approximate pin power reconstruction
procedure, which is commonly required in the conventional two-
step method.

Pin-wise core calculation is a lotmore tractable thanwhole-core
transport calculations and is generally known to provide higher
accuracy than the standard two-step approaches. However, the
pin-wise approach is still computationally intensive because there
are a lot more unknowns to be considered, e.g., 17 � 17 meshes per
fuel assembly versus one or four meshes per fuel assembly in the
nodal methods. For an efficient pin-wise core calculation, the one-
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node coarse-mesh finite difference (CMFD) method [9] has been
developed, in which the global CMFD equations are formulated
based on local fine-mesh finite-difference method (FDM) solutions
for pin-wise heterogeneous fuel assemblies. The one-node CMFD
method is a very promising method because local problems can be
solved independently or in parallel. However, its parallel perfor-
mance has not been investigated by the original developers.

In the recent works by the authors [11,12], the computing effi-
ciency of the one-node CMFD method was substantially enhanced
by solving the local problems with the well-developed nodal
expansion method (NEM)ebased two-node CMFD method [13,14].
Consequently, the one-node CMFD method can now be coupled
with the conventional two-node nodal CMFD method. This two-
level combination of the two CMFD methods has an unsurpass-
able advantage in that each local problem can be solved in parallel
and efficiently; more importantly, the parallelism is extremely high
because most of the computing work is for local problem analysis.

In this article, we present the one- and two-node hybrid CMFD
method, called HCMFD, in detail for pin-by-pin whole-core calcu-
lation, and its numerical characteristics and performance are
evaluated in both serial and parallel platforms for several bench-
mark problems. In addition, a comparison with the standard two-
node CMFD method is made. We evaluated the parallel perfor-
mance of the HCMFD algorithm on an OpenMP [15] parallel
platform.

2. One-node CMFD for global domain

2.1. Basic theory

The one-node CMFD module solves the global neutron balance
equation for the whole reactor domain. The global CMFD module
provides the eigenvalue and average partial currents at large
coarse-mesh boundaries, which are used in the local two-node
NEM CMFD and the two-level hybrid algorithm. The main frame-
work of one-node CMFD is expressed in Eq. (1).
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CMFDf

global
CMFD ¼ 1
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In the nodal equivalence theory, nodal method based on coarse
mesh can provide the reference nodal quantities of the neutron
diffusion equation when the surface net currents are preserved. In
the one-node CMFD method, the fine-mesh heterogeneous local
problem, which is a high-order method, is accelerated by a
balancing equation based on the coarse-mesh global problem in a
nonlinear iteration scheme. The low-order equation comprises
homogenized parameters based on equivalence theory. Therefore,
the preservation of the reference net currents at the interface can
make the one-node CMFD method reproduce reference nodal
quantities.

The right side of Eq. (1) shows the local calculation of the one-
node CMFD method with fine mesh. The local problem, which is
a fixed source problem, is solved by a high-order method, i.e., the
nodal method or the transport method. The solution of the local
domain produces correction factors which correct the surface cur-
rent values. In the one-node CMFD method, the local domain is
calculated independently with the incoming partial current
boundary conditions, which are calculated from the global domain.
Therefore, the one-node CMFD method can provide the best
computational framework for a parallel global-local nonlinear
iteration.

The one-node CMFD equations can be derived from the two-
dimensional neutron diffusion equation, which is integrated over
the spatial volume of a mesh cell as follows:
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The direction of each node's net current is outward from the
center of the mesh.

As shown in Fig. 1, at each interface of the coarse-mesh unit cell
(i,j), the two FDM approximations for the net current are expressed
in Eqs. (3a) and (3b).
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Jglobal;�ε ¼ � 2Di;j
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�
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where

D:diffusion coefficient;
ε:infinitesimally small value;
f :volume� averaged flux;
fs:suface flux at the boundary

A finemesh is clearly needed to solve Eq. (2) with good accuracy.
However, this would unfortunately require larger computing time
than when the problem is solved using a coarse mesh. To reduce
computing time, the CMFD method is widely used as an efficient
acceleration scheme of the nodal method. It should be noted that,
unlike the conventional CMFD, the one-node CMFD formulation
uses two correction factors instead of one. With two correction
factors, the interface net currents can still be corrected to a
reasonable accuracy even when the problem is solved using a
coarse mesh. The two net currents in Eqs. (3a) and (3b) can be
corrected with two correction factors in the following way:
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where bD±ε
are two different correction factors.

Based on diffusion theory, these two currents at the interface are
the same. Hence, the two-sided current limits in Eqs. (4a) and (4b)
can be made equal to solve the surface flux at the interface. This

Fig. 1. Two meshes in a global problem.
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