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Abstract

We propose a new two-parameter ageing distribution which is a generalization of the Weibull and study its properties. It has a simple

failure rate (hazard rate) function. With appropriate choice of parameter values, it is able to model various ageing classes of life

distributions including IFR, IFRA and modified bathtub (MBT). The ranges of the two parameters are clearly demarcated to separate

these classes. It thus provides an alternative to many existing life distributions. Details of parameter estimation are provided through a

Weibull-type probability plot and maximum likelihood. We also derive explicit formulas for the turning points of the failure rate function

in terms of its parameters. This, combined with the parameter estimation procedures, will allow empirical estimation of the turning

points for real data sets, which provides useful information for reliability policies.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Motivated by engineering applications, Weibull [1]
suggested a distribution that has proved to be of seminal
importance in reliability. The survival function is given by
the equation

F̄ ðtÞ ¼ expð�ðt=bÞaÞ; t40, (1)

with parameters a;b40. The corresponding failure rate
function is

hðtÞ ¼
a
b

t

b

� �a�1

. (2)

The Weibull distribution has been widely used to model the
failures of many materials, and in numerous other
applications. A very small sample of the vast literature
includes applications to the yield strength and fatigue life
of steel [1], fracture strength of glass [2], pitting corrosion
in pipes [3], adhesive wear in metals [4], and failure of
carbon fibre composites [5], coatings [6], brittle materials
[7], composite materials [8], and concrete components [9].

Recently, it has been applied in mixture models, particu-
larly for automobile warranty data [10–12].
A recent paper by Murthy et al. [13] discusses additional

applications, and gives a methodological review of the
‘Weibull area’. It also suggests further study of various
Weibull-type distributions, their properties, related plots,
and model selection. In this paper we introduce yet another
member of the Weibull family, which we call the ‘flexible
Weibull distribution’. We will first define it mathematically,
then examine its properties, and finally details of its
application.
We see from (2) that the Weibull distribution has a

monotonic failure rate function, although this may be
increasing or decreasing. In more complex systems, such as
electronic ones, the failure rate is often non-monotonic.
This usually takes the form of increased failure rate
early (‘wear-in’) and late (‘wear-out’) in the component
lifetime. This is usually termed a ‘bathtub-shaped’ failure
rate, or if the limit of the failure rate at time zero is zero, a
‘modified bathtub’ (MBT) (or ‘roller coaster’)-shaped
failure rate. Given the utility of the bathtub-shaped failure
rate functions in reliability engineering, many of the
variations on the Weibull distribution have been motivated
by the desire to produce a bathtub-shaped failure rate
function.
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Gurvich et al. [14] introduced a class of distributions
characterized by the cumulative distribution function

F ðtÞ ¼ 1� expf�aGðtÞg; t40, (3)

with parameter a40, where GðtÞ is a monotonically
increasing function of t. Equivalently, the survival function
is F̄ ðtÞ ¼ expf�aGðtÞg.

Nadarajah and Kotz [15] have since shown that several
existing life distributions, such as the modified Weibull
extension F ðtÞ ¼ 1� expð�la½ðt=aÞb � 1�Þ, see [16], may be
expressed in the form (3). Clearly, (3) is a generalized
Weibull distribution. Xie et al. [17] reviewed several
families of extended Weibull distributions, while a com-
prehensive taxonomy of Weibull models can be found
in [18].

In this paper, we propose a new life distribution of a
similar form to (3), with the difference that GðtÞ is not a
monotonic function of t. We will completely characterize
the failure rate function, and consider parameter estima-
tion. The new distribution is shown to be quite flexible,
being able to model both IFR and IFRA ageing classes.
Also, it can yield a MBT-shaped failure rate distribution,
and in particular, allows considerable flexibility in model-
ling the ‘pre-useful’ (i.e., infancy) period.

2. The new flexible Weibull distribution

We will define our model in terms of the survival
function. Let T be a lifetime random variable, and

F̄ ðtÞ ¼ expð�eat�b=tÞ; t40, (4)

with parameters a;b40: Clearly, this has the form of
distribution (3) with a ¼ 1 and

GðtÞ ¼ eat�b=t. (5)

However, function (5) is not monotonic in t and so the
distribution under consideration differs from that in (3)
considered by Gurvich et al. [14]. Note that when b ¼ 0, if
we set a ¼ logðlÞ, distribution (4) becomes exponential and
thus the proposed life distribution may be regarded as a
generalization of the Weibull.

The density function corresponding to (4) is

f ðtÞ ¼ ðaþ b=t2Þ expðat� b=tÞ expð�eat�b=tÞ.

Though formulas for the mean and the variance are
difficult to obtain explicitly, the quantiles are easy to
evaluate. Let tp be the pth quantile of T. By considering the
log–log transformation of p ¼ F̄ ðtÞ, we have logð� log pÞ ¼

ðat2 � bÞ=t and so tp is a solution of the quadratic equation
in t

at2 � logð� log pÞ t� b ¼ 0.

Since the solutions have to be non-negative, the only one is

tp ¼
1

2a
logð� log pÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
flogð� log pÞg2 þ 4ab

q� �
.

The failure rate function has a reasonably simple form

hðtÞ ¼
f ðtÞ

F̄ ðtÞ
¼ ðaþ b=t2Þ expðat� b=tÞ. (6)

The shape of the density and failure rate function are
illustrated for selected values of a and b in Figs. 1 and 2.
For reference, the solid curve is the same in both figures.
We see that as b decreases, the failure rate function
becomes more ‘bathtub-like’. While, as a increases, the
‘bathtub’ becomes ‘shallower’. In particular, we see that the
model has a great deal of flexibility in the existence and
weight of the failure mode corresponding to wear-in.
Various properties of f ðtÞ and hðtÞ that follow from their
definitions and/or can be seen in Figs. 1 and 2 are discussed
in detail in the next section.

3. Ageing behaviour

We note that limt!1 hðtÞ ¼ 1, thus the failure rate
function is ultimately increasing. Also, with the notation
s ¼ 1=t for computational convenience,

lim
t!0

hðtÞ ¼ lim
s!1
ðaþ bs2Þ expð�bsþ a=sÞ

¼ lim
s!1

2bsðbþ a=s2Þ�1 expð�bsþ a=sÞ

¼ lim
s!1

2bðbþ 2a=s2 � 2a=s3 þ a2=s4Þ�1

� expð�bsþ a=sÞ

¼ 0,

and thus a pure bath-tub form is impossible.
The rest of this section is subdivided into three

subsections in which we consider more subtle properties
of the failure rate function hðtÞ. First we determine the
values of a and b for which hðtÞ is increasing, that is,
belongs to the IFR class, and then we determine the values
of a and b for which hðtÞ belongs to the IFRA class.
Interestingly, we shall show that there are values of a and b
for which hðtÞ is IFRA but not IFR. Finally, we will
consider in detail the case when hðtÞ is not IFR, and show
that hðtÞ takes on the MBT shape. Such failure rate
functions are particularly useful models in many practical
situations (cf., e.g., [19]).

3.1. IFR

We need to determine the parameter values for which the
failure rate function hðtÞ is an increasing function, that is,
belongs to the IFR class. Naturally, we solve the problem
by specifying those a and b for which h0ðtÞ is strictly
positive for all tX0.
Consider the derivative of the failure rate function hðtÞ. It

follows from (6) that

h0ðtÞ ¼
�2b

t3
eat�b=t þ

at2 þ b
t2
ðaþ b=t2Þeat�b=t

¼
ðat2 þ bÞ2 � 2bt

t4
eat�b=t.
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