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ABSTRACT

The diagnosis of loss of coolant accidents in nuclear reactors has attracted a great deal of attention in condition
monitoring of nuclear power plants given that the health of the cooling system is crucial to the nuclear reactor's
stable operation. Many different types of neural networks have commonly been applied to loss of coolant ac-
cident diagnosis. It is important to select a suitable architecture for the neural network that delivers robust
results, in that the predicted break size is deemed to be accurate even for break sizes that are not included in the
training data sets. The robustness metric proposed in our previous work is applied to compare the robustness of
different diagnostic models. The data used for training these models consists of a number of time-series data sets,
each for a different break size, with the transient behavior of different measurable variables in the coolant
system of a nuclear reactor, following a simulated loss of coolant accident in a high-fidelity simulator. Given the
simulation data for different break sizes, four different neural network architectures are investigated and their
properties are compared and discussed. These models include a fully-connected multilayer perceptron with one
hidden layer, a multilayer perceptron with one hidden layer that is pruned using the optimal brain surgeon
algorithm, a fully-connected multilayer perceptron with two hidden layers, and a group method of data handling
neural network. In this paper, an interpolation pre-processing method is investigated and shown to be effective
to further improve the capability of neural networks for robustly predicting the break size of a loss of coolant
accident. Both linear interpolation and cubic spline interpolation are studied as alternatives for the pre-pro-
cessing approach. The performance of models developed with and without interpolation pre-processing are
compared with the previously proposed robustness metric. Moreover, three blind cases are introduced to
evaluate and compare the performance of the diagnostic models. Finally, a combined diagnostic model is pro-
posed based on three different architectures to obtain high prediction accuracy and good robustness.

1. Introduction

The Three Mile Island accident revealed that operators may not
efficiently handle voluminous information in abnormal conditions.

The reactor coolant system is the key part of nuclear power plants
(NPPs). There is a critical part of the cooling system where 'breaks' can
occur - these breaks are essentially ruptures of pipes leading to leaks of
the coolant. The bigger the leak, the worse the problem is. These
breaks, commonly denominated loss of coolant accidents (LOCA) may
lead to serious consequences for the plant, the environment, and peo-
ple's health and safety. To safely deal with such scenarios, every nuclear
plant is equipped with an Emergency Core Cooling System (ECCS),
which is highly reliable and operates automatically if it detects a break.
It is immensely important for operators to detect breaks and understand
their severity so they can take appropriate actions, in the unlikely case
that the ECCS fails to operate.

* Corresponding author.
E-mail address: victor.becerra@port.ac.uk (V. Becerra).

https://doi.org/10.1016/j.pnucene.2018.07.004

Therefore, the timely and accurate recognition of NPP status requires
automation development to guarantee safe and reliable operation (Mo
et al., 2007). If a LOCA occurs in a nuclear power plant, it is quite
difficult for operators to interpret the trends of measured variables
because of the large volume of information from sensors and the fact
that changes may occur rapidly when a plant moves from a normal state
to an abnormal state (Moshkbar-Bakhshayesh and Ghofrani, 2013).
Therefore, many artificial intelligence techniques including neural
networks have been applied to assist the operators to detect and diag-
nose the break size of LOCA.

To detect and diagnose the LOCA, a great deal of attention has been
paid to the monitoring of the coolant system (Mo et al., 2007;
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Moshkbar-Bakhshayesh and Ghofrani, 2013; Choi et al., 2017). Da
Costa et al. (da Costa et al., 2011) developed an operator support
system based on Neuro-Fuzzy approach to identify accidents, including
LOCA, rapidly and accurately. Choi et al. (2017) presented a method to
estimate the LOCA break size using the cascaded fuzzy neural network
model. Na et al. (2004) applied probabilistic neural network to classify
accidents such as LOCA, loss of feedwater station blackout, and steam
generator tube rupture, and used a fuzzy neural network to identify
these severe accident scenarios. Multilayer perceptrons (MLPs) with
different network structures and learning algorithms are the most
popular neural networks for fault diagnostics in NPPs (G. Vinod et al.,
2003; Moshkbar-Bakhshayesh and Ghofrani, 2013). Radial basis func-
tion (RBF) networks were used by Renders et al. (1995) to detect in-
cipient incidents. Probabilistic neural networks (PNNs) and learning
vector quantization (LVQ) networks were used for “Don't Know” clas-
sification in (Bartal et al., 1995). Na et al. (2004) and da Costa et al.
(2011) used fuzzy neural networks (FNNs) for accident classifications.
Lee et al. (2011) proposed a scheme to diagnose LOCAs using support
vector classification (SVC) and group method of data handling (GMDH)
models. The simulation results confirmed that the proposed SVC model
can discover the break location without a misclassification and the
proposed GMDH models can estimate the break size accurately. To
detect the cracks and leakage which may appear before LOCA, Zhang
et al. applied a three-layer back propagation network and a genetic
neural network to predict the leak before break (LBB) for various
conditions (Zhang et al., 2017). Most current diagnostic systems focus
on classification. Few of these systems were designed to predict the
severity of the diagnosed scenario (Lin et al., 1995). This article focuses
on the study of numerical values that measure the severity of an acci-
dent, rather than a qualitative prediction of severity.

Dynamic neural networks have been commonly applied for time
series prediction. However, in this work, a static neural network with
constant weights is used to map the instantaneous values of the set of
input variables to the predicted break size. Normally, to train a dyna-
mical model the training data is required to capture how the output of
the system changes with the changes in the input. In our case, the
available input-output data is not suitable to train dynamical models, as
the training output is a constant for each break size. Therefore, dynamic
neural networks are not suitable for predicting the break size in LOCA.

MLPs may have difficulties with generalization when the training
data is limited (Hagan and Menhaj, 1994). It is important to select an
optimal architecture for the neural network that delivers robust results.
To achieve this purpose, different attempts have been made to auto-
mate the architecture selection. One common strategy is to start with a
fully-connected network architecture which (in principle) is large en-
ough to describe the system, then weights are eliminated one at a time
according to well defined criteria, until an architecture that is optimal
in some sense has been reached. An example of this approach is the use
of the optimal brain surgeon (OBS) algorithm (Hassibi and Stork,
1993). Other strategies go in the opposite direction by starting with
small network architecture and then gradually growing it, such as a
GMDH approach.

In our previous work (Tian et al., 2017), we have presented a ro-
bustness measure for designing robust neural networks for LOCA break
size predictions. Based on this robustness measure, this paper in-
troduces interpolation approaches for data processing as a way to im-
prove the robustness of the models. Moreover, blind cases are used for
evaluating the developed models. The paper is organized as follows:
Section 2 introduces the neural network structures that are investigated
in this paper. Section 3 details the data description, modelling and
testing process, along with the proposed robustness measure. Section 4
shows the data processing results and discussion. Section 5 presents the
validation of the diagnostic models and proposes a robust combined
diagnostic model, followed by conclusions in Section 6.
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Fig. 1. One hidden layer MLP with one output.

2. Methodology

This section introduces the working principles of the neural net-
works that are investigated in this paper.

2.1. Multilayer perceptron

MLP is a kind of feedforward artificial neural network (Haykin,
1999) where a large number of processing elements (called neurons)
are interconnected in a directed graph to create a functional mapping
from an input data space to an output target space after training. A
basic MLP contains three layers (input layer, hidden layer, and output
layer) as shown in Fig. 1. Except for the input layer, all neurons in the
other layers contain activation functions which are either linear or non-
linear.

The output of the hidden neuron j can be written as

N
Y= <I>j(ij-x + b)) = qﬁj(z wiX; + bj)
i=1 @
Here, the input vector to the neural network is x = [x;, X%, -, xn]7,
W = [wj, Wy, -, wyn]T denotes the weight vector between the hidden
neuron j and the inputs, b; is the bias, and @ is the activation function
which is normally taken as a non-linear function, such as a sigmoid
function. The output of the neural network is given by Eq. (2) (Laurene,
1994; Simon, 1998).
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Here, @, is the activation function of the output neuron which is
normally taken as a linear function, y" is the final output of the MLP
network, b, is the bias value of the output neuron o, and wy; is the sy-
naptic weight value from the hidden neuron j to the output neuron o.

A MLP is often trained with the widely used backpropagation al-
gorithm. The algorithm consists of two steps. In the forward pass, the
predicted outputs are calculated corresponding to the given inputs. In
the backward pass, partial derivatives of the cost function with respect
to the different parameters are propagated back through the network.
The network weights can then be adapted using any gradient-based
optimisation algorithm. The whole process is iterated until the weights
have converged (Laurene, 1994) or a given stopping criterion is sa-
tisfied.

In this paper, the Levenberg-Marquardt algorithm is used for
training because it is the fastest method for moderate-sized feedforward
neural networks (up to several hundred weights). The application of the
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