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A B S T R A C T

Spectral Green's function nodal methods (SGF) are well established as a class of coarse mesh methods. For this
reason, they are widely used in the solution of neutron transport problems in discrete ordinates formulation S( )N .
When compared with fine mesh methods, SGF are considered efficient, as solutions are as accurate as, using a
smaller number of spatial nodes, reducing floating point operations. However, the development of spectral-nodal
methods for XeY Cartesian geometries, has been limited due to (a) difficulties in implementing efficient com-
putational algorithms and, (b) high algebraic and computational costs. This is because these methods need to use
NBI-type (One-Node Block Inversion) sweep schemes. The composite spatial grid methods were developed to
overcome these challenges. In this work, we describe a composite spatial grid spectral-nodal method to solve
one-speed discrete ordinate eigenvalue problems in XeY Cartesian geometry with isotropic scattering. The
discretization is developed into two stages and two 1D problems coupled by transverse leakage terms in each
domain region are obtained. In order to converge toward the numerical solution, we used an alternating-di-
rection iterative technique and a modified source iteration sweep scheme. Also, we used the conventional power
method to estimate the problem's dominant eigenvalue. Numerical results for benchmark problems are presented
to illustrate the accuracy and performance of the developed method. This approach offers more accurate and
efficient results for integral quantities if compared with others SGF methods.

1. Introduction

Eigenvalue problems appear in nuclear reactor criticality calcula-
tions, where reactor core multiplicative parameters for different geo-
metric configurations, multiples nuclear fuels and several operation
conditions are evaluated. On the nuclear reactor core, neutron gen-
eration and losses must be in balance during operation. Neutron losses
include the leakage outside the core and the absorption by non-fissile
materials. On the other hand, neutron generation is due to fission chain
reactions. This balance is expressed through the neutron transport
equation (Bell and Glasstone, 1970).

The mono-energetic discrete ordinates formulation (SN ) (Lewis and
Miller, 1984) is one of the most used models in deterministic calcula-
tions of neutron transport. Several methods are used in the

discretization of the spatial variables. They are classified as fine (Lewis
and Miller, 1984), medium (Wareing et al., 2001; Courtot, 1981) and
coarse (Walters, 1986; Lawrence, 1986; Garcia and Siewert, 1981)
mesh methods. Coarse mesh methods for spatial discretization are de-
sirable due to their computational efficiency and numerical accuracy.
Among them, nodal methods are used to numerically solve the SN for-
mulation in Cartesian geometry (Badruzzaman, 1990). Nodal methods
are supported by the transverse integration procedure and consider
approximations for scattering source and leakage terms. Thus, it is
possible to use polynomial approximations in all terms, such approach
is used by polynomial-nodal methods (Azmy, 1988).

On the other hand, it's possible to treat the source terms analytically
and to approximate the transverse leakage terms with polynomials, this
strategy is used by the spectral Green's function methods (Barros and
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Larsen, 1992; Barros et al., 1999). The spectral Green's function
methods lead to more accurate numerical solutions than polynomial-
nodal methods as the scattering source terms are not approximated.

As the total computing time for iterative numerical schemes is pro-
portional to the mesh size, SGF methods are very important class of
methods. They generate accurate results for coarser meshes, offering good
computational performance when compared with non-SGF methods. Yet,
the developed spectral Green's function methods, particularly the Spectral
Diamond-Spectral Green's Function-Constant Nodal (SD-SGF-CN) method
(Filho et al., 2002) for eigenvalue problems in XeY geometry, presents
difficulties in the computational algorithm implementation and also, high
algebraic and computational costs. This is because they use the One-Node
Block Inversion (NBI) (Barros and Larsen, 1992) sweep schemes, leading
to complex computational algorithms.

In order to avoid the Spectral Green's Function methods' dis-
advantages, the Composite Spatial Grid-Spectral Green's Function-
Constant Nodal (CSG-SGF-CN) method was proposed for fixed source
problems (Dominguez et al., 2010). Composite Spatial Grid's methods
are characterized for the accurate integral quantities results.

These methods discretize spatial variables by reducing the 2D pro-
blem in two 1D problems coupled by the transverse leakage terms
through two steps. Firstly, a rectangular coarse mesh with each cell
matching a material region is used. Then, for each mesh cell transver-
sely integrated SN equations in the x and y spatial directions are ob-
tained. In these equations, constant approximations for the transverse
leakage terms are introduced. Secondly, a finer spatial grid is used to
discretize the transversely integrated SN equations that can be solved
separately. As 1D problems are coupled by the transverse leakage
terms, an alternating-direction iterative technique is applied to reach
convergence. These methods preserve the spectral-nodal technique's
accuracy using simpler one-dimensional formulations.

Following CSG-SGF methods, the Composite Grid Diffusion-Spectral-
Green's Function method was developed for eigenvalue problems in XeY
geometry with constant approximation (Nascimento and Dominguez,
2015). Thereafter, the Composite Spatial Grid Spectral Green's Function
Exponential method (Aguiar et al., 2015) was introduced which uses ex-
ponential approximations and solves fixed source problems.

In this work, we propose a new approach for the family of Composite
Grids Spectral-Nodal methods. The development of the Composite Spatial
Grid-Spectral Diamond-Constant Nodal (CSG-SD-CN) method solves SN
mono-energetic eigenvalue problems in XeY geometry with isotropic
scattering. The new method extends the Spectral Diamond-Spectral
Green's Function method (de Abreu et al., 1996) and uses a constant ap-
proximation for the transverse leakage terms. In order to converge to the
numerical solutions of the angular flux, we used a modified Source
Iteration (SI) sweep scheme (de Abreu et al., 1996), that led to a simpler
algorithm than the NBI scheme. We also use the Power method (Burden
and Faires, 2010) to estimate the problem's dominant eigenvalue.

In the next section, fundamentals of the CSG-SD-CN method are
summarised. In Section 3, numerical benchmarks are solved and nu-
merical results comparing the proposed method with SD-SGF-CN
method (Filho et al., 2002) are presented. In Section 4, conclusions are
drawn and suggestions for future work are outlined.

2. The CSG-SD-CN method

The present section is divided into three parts. In Section 2.1, the
procedure to discretize the spatial variables of the SN formulation using
an external spatial coarse grid is described, i.e., the first step of spatial
discretization. In Section 2.2, we briefly present the spectral analysis of
the SN equations transversely integrated to obtain an expression for the
general analytic solution in the spatial cell interior with a constant
approximation for the transverse leakage terms. In the third and last
subsection, we describe the second step of the spatial discretization, this
is the procedure to discretize the one-dimensional SN transversely in-
tegrated equations using an internal mesh finer than the external.

2.1. External discretization

Consider a 2D rectangular domain in 2 with dimensions (X Y, ),
and several rectangular regions Ri j, , =i I1: and =j J1: . The Ri j, re-
gions have constant physical properties and dimensions h h( , )i j

x
i j
y

, , , as
shown in Fig. 1.

In the first step of the spatial discretization, we introduce a uniform
spatial mesh Λ, in which Λi j, cells match with material regions Ri j, in
Fig. 1, i.e., ≡ RΛi j i j, , , for =i I1: e =j J1: . The SN discrete ordinates
formulation (Lewis and Miller, 1984) in each cell appears as,
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where μ( m, ηn, and ω )m are the level symmetry quadrature parameters,
ψm is the angular neutron flux, σti j, is the total cross-section, σs0i j, re-
presents the differential scattering cross-section, σfi j, is the fission cross-
section and keff is the effective multiplication factor. Also, ∈x y R( , ) i j, ,

=m M1: , = +M N N( 2)/2 and N is the quadrature order.
In order to reduce the 2D partial differential equations problem

(represented by Eq. (1) into two 1D ordinary differential equations
problem), we apply the transverse integration concept in x and y di-
rections in each spatial cell Λi j, of the external mesh.

The 1D equations are obtained by applying the following transverse
integration operators in one arbitrary cell Λi j, for the y and x spatial
directions, respectively,
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As the mathematical procedure is similar for each spatial direction,
from now on, we assume just the transverse integration equation in y
direction and therefore, dependent on x, to illustrate the CSG-SD-CN
method construction. Thus, the transverse integrated equation in y di-
rection for the angular flux zero-order moment in one arbitrary angular
direction is,
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where we defined

Fig. 1. CSG-SD-CN method external mesh over the problem's 2D rectangular
domain.
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