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A B S T R A C T

A novel, hierarchical Haar wavelet basis is introduced and used to discretise the angular dimension of the
Boltzmann transport equation. This is used in conjunction with a finite element subgrid scale method. This
combination is then validated using two steady-state radiation transport problems, namely a 2D dogleg-duct
shielding problem and the 2D C5MOX OECD/NEA benchmark. It is shown that the scheme has many similarities
to a traditional equal weighted discrete ordinates (Sn) angular discretisation, but the strong motivation for our
hierarchical Haar wavelet method is the potential for adapting in angle in a simple fashion through elimination
of redundant wavelets. Initial investigations of this adaptive approach are presented for a shielding and criti-
cality eigenvalue example. It is shown that a 60% reduction in the number of angles needed on most spatial
nodes - and rising up to 90% on nodes located in high streaming areas - can be attained without adversely
affecting the accuracy of the solution.

1. Introduction

Modern wavelet research was pioneered by the likes of Morlet,
Grossman, and Daubechies (Grossmann and Morlet, 1984; Daubechies,
1988). The research efforts of the former two in signal processing led to
the creation of a wavelet transform method that allowed the re-
presentation of information localised simultaneously in time and fre-
quency, a feat otherwise not possible using Fourier Transforms
(Grossmann and Morlet, 1984). The wavelet transform method was also
unique in that the wavelet used as the analysing functions were not
limited to a particular type. This spurred the proposal of several wavelet
types (or families) differing in form from constant functions to poly-
nomials and exponentials (Kronland-Martinet et al., 1987; Schroder and
Sweldens, 1995). Some examples of wavelet families include the Le-
gendre, Morlet, Gaussian, Shannon, Haar, and Daubechies wavelets
(Aboufadel and Schlicker, 1999).

While the proposed wavelet families differed individually, they all
shared the property of being zero everywhere except on a small in-
terval. Such functions with zero values everywhere outside their closed
and bounded intervals were said to be compactly supported (Aboufadel
and Schlicker, 1999). Daubechies' work would later produce a ground-
breaking paper on compactly supported wavelets, proving that it was
possible to develop wavelets with desired properties tailored to specific

applications (Daubechies, 1988). The research work which ensued led
to the development of the multiresolution analysis (MRA) which en-
abled a hierarchical wavelet reconstruction of a signal in layers of in-
creasing resolution. The second-generation wavelet transform was later
developed to address some of the deficiencies of traditional wavelets,
allowing them to be used in representing functions on arbitrary do-
mains (Schroder and Sweldens, 1995).

Before long, wavelets became a very useful tool in a number of fields
such as image/data compression and computer graphics applications,
and over time, expanded into a number of numerical analysis fields
(Aboufadel and Schlicker, 1999; Buchan et al., 2005; Li and Chen,
2014). In solving ordinary differential equations and partial differential
equations, wavelets have been applied for the Navier-Stokes equation
(Schneider and Farge, 2000; Wei et al., 1998; Zhou and He, 2005) and
other parabolic (Heydari et al., 2014; Ho and Yang, 2001; Chiavassa
et al., 2002) and hyperbolic equations (Alves et al., 2002; Hong and
Kennett, 2002; Massel, 2001; Reckinger et al., 2014). More recently,
wavelets have been applied in solving the Boltzmann Transport Equa-
tion (BTE) (Buchan et al., 2005, 2011; Cao et al., 2008; Zheng et al.,
2009a, 2009b; Adam et al., 2016). Schroder and Sweldens (1995)
spearheaded the construction of wavelets on the sphere to represent
spherical functions. Some other works showing the different applica-
tions of wavelets on the sphere include Freeden and Windheuser
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(1997), Demanet et al. (2002), Antoine and Vandergheynst (1999), and
Buchan et al. (2008).

This article presents a new approach for representing the direction
of neutron particle travel through a Haar wavelet discretisation of the
angular dimension of the BTE. Related works include that of Buchan
et al. who applied linear and quadratic octahedral wavelets (Buchan
et al., 2005) as well as self-adaptive spherical wavelets (Buchan et al.,
2008) on the sphere to represent the angular flux of the BTE. Cao et al.
used a Daubechies' double wavelets expansion in solving the angular
domain of the neutron transport equation (Cao et al., 2008). Recently, a
two-dimensional Haar wavelet collocation method has been used by
Patra and Ray to solve the neutron transport (Patra and Ray, 2014a)
and point kinetics equation (Patra and Ray, 2014b). However, this is
the first time the angular variable of the neutron flux has been dis-
cretised through a dual Haar wavelet expansion on the sphere com-
bined with a subgrid scale (SGS) finite element method (FEM) that
enables an efficient solution method.

The dual Haar wavelet discretisation can be shown to generate
identical discretisations to the Sn method when particular weights and
directions are used. However a strong motivation for pursuing this Haar
wavelet approach is that its inherent properties of using compactly
supported functions within a hierarchical expansion scheme allow the

incorporation of angular adaptivity into the discretisation. Compactly
supported functions locally resolve the problem meaning that only
those that contribute most to the solution need to be retained.
Redundant wavelet functions that contribute little to the solution can
be eliminated from the calculation and this can be achieved in a con-
sistent manner through the use of hierarchical expansions, as shown in
(Buchan et al., 2008). As such, resolution can be focused on regions of
angle where it is needed most using fewer functions than traditional
approaches to enhance computational efficiency. This Haar approach
also has advantages over other similar wavelet schemes, e.g. (Buchan
et al., 2008), as it leads to more sparse discretised matrix systems that
can be utilized to improve solving times. It also bridges the gap between
Sn and adaptivity in angle, although other important works in this area
include that of Adams and Larsen (2002), Jessee et al. (1998), Ragusa

and Wang (2010).
The aim of this article is to lay the foundations by developing the

Haar wavelet angular discretisation for the resolution of the BTE. It will
show that the Haar wavelet method can produce solutions that are
identical to certain Sn quadrature schemes. However it will also show
these quadrature rules are not necessarily optimal in comparison to
other Sn methods. The most important component for the Haar wave-
lets' use in neutron transport is therefore their potential to adapt in
angle, which may substantially reduce problem size and decrease
computational solving times. For certain problem types angular adap-
tivity could exceed standard Sn methods when constant and high re-
solution quadrature sets are used. To lay the foundations this paper
focuses on two developments in addition to the Haar wavelet dis-
cretisation. Firstly it will develop the angular Haar wavelet method
within a spatial discretisation scheme, suitable for the BTE, that can be
solved efficiently without a sweep based solver. This is vital as the Haar
wavelets will introduce coupling of angular moments through the

streaming operator and sweep-based Sn like solvers can no longer be
employed. Secondly we will demonstrate the potential of adaptivity by
filtering redundant wavelets from their solution. This aims to highlight
the powers of adaptivity and indicate the reduction in problem size that
may be achieved. A second article will follow the developments here
showing how the model and solver can be adapted to enable self-
adaptivity that produces highly efficient solutions in angular resolution.

The sections of this article are set out as follows. In section 2 the BTE
is introduced and the discretisation of the space and angle dimensions
are given. In section 3, the MRA is introduced and the general wavelet
MRA is applied to the Haar wavelet family in capturing the angular
dependence of the BTE. In section 4, two numerical examples are pre-
sented. These are specifically chosen to demonstrate the capability of
the Haar approach over a range of radiation transport conditions and to
illustrate the potential gains from using adaptivity with Haar wavelets
in this framework. Finally, section 5 completes the paper with a con-
clusion on the findings and proposed future works.

2. Discretisation of the Boltzmann transport equation

The following sections describe the BTE and provide an overview of
the space-angle discretisation methods used in this article.

2.1. The Boltzmann transport equation

The BTE governs the conservation of neutral particle transport
within its surrounding medium. For fixed source problems, the first
order time-independent multi-group equations are given as (Buchan
et al., 2015; Goffin et al., 2013)
where G energy groups are represented and the subscript g denotes
each energy group. The angular flux, rψ Ω( , ˆ )g , is defined over a five
dimensional solution space; three of which are in the spatial direction r ,
and two of which are in the direction of travel or angular domain Ω̂.
The cross section, Σt , defines the probability that the particles are re-
moved through both absorption and scattering, (i.e. = +Σ Σ Σt a s) with
the source term designated as Sg. For criticality problems, the eigen-
value form of the BTE reads as,

where the fission energy spectrum is denoted as χg, νg is the average
number of neutrons emitted per fission and Σf g, the fission cross-section.
We consider both the angular flux ψg and eigenvalue =λ k1/ eff . In the
following sections it is sufficient to consider just the fixed source mono-
energetic equations.

Both vacuum and reflective boundary conditions will be considered
in this article which are defined as,

= ⋅ <r nψ Ω Ω( , ˆ ) 0, where ˆ 0. (3)

and,

⋅ = − ′⋅ ′ × ⋅ =n n nΩ Ω Ω Ωˆ ˆ and ( ˆ ˆ ) 0, (4)

respectively. The term n denotes the outward facing normal to the
boundary and ′Ω̂ is the specular reflected angle to Ω̂ with respect to n.
Satisfying these conditions using the wavelet discretisation is discussed
in section 3.

The angular dimension Ω̂ is conventionally represented on the
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