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A B S T R A C T

The 2-D/1D whole-core transport method has been widely studied for 3-D fine flux or power distributions and
implemented in many deterministic codes. KYCORE, a 2-D/1-D transport code, developed a new iteration
strategy to calculate forward flux. In order to perform kinetics parameter computation and sensitivity analysis,
an adjoint flux solution is required in modern reactor physics analysis. In this study, a new adjoint neutron
transport solver, named KYADJ, was developed by utilizing the 2-D MOC and 1-D SN coupling method. A ×3 3
lattice test problem and C5G7 OECD/NEA 3-D benchmarks were used to verify the forward-adjoint neutron
transport calculation of KYADJ. Forward-adjoint multiplication factors, forward flux, adjoint flux and kinetics
parameters were compared with reference results generated by the Reactor Monte Carlo code RMC. Results
showed that KYADJ agreed well with RMC and KYADJ had the ability to provide fine pin-by-pin forward and
adjoint flux distributions and accurately compute kinetics parameters.

1. Introduction

An adjoint flux distribution physically represents neutron im-
portance that measures the contribution of neutrons to the steady
power in a critical reactor core (Cacuci, 2010). It has two aspects of
applications: the adjoint sensitivity analysis based on the perturbation
theory Cacuci, 2003) and the quasi-static method in point kinetics
equations (Stacey, 2007). The point kinetics equation solutions require
the accurate calculation of point reactor kinetics parameters which use
the adjoint flux as their weight function. Therefore, the adjoint neutron
transport equation has been extensively studied in many advanced
codes (Han et al., 2015; Peng et al., 2017; Pusa, 2012; Shokueifar et al.,
2016; Zhu et al., 2015a,b).

The “two-step” approach dominates the conventional industrial
application and reactor analysis due to its mature technology and
convenience. Firstly, a lattice code provides homogenized parameters
such as few-group cross-sections and discontinuous factors by con-
ducting the transport calculation of an isolated assembly. Secondly,
nodal codes apply these parameters to the whole-core diffusion calcu-
lation. The accuracy of this approach remains a serious problem as a
result of approximations in models and numerical methods. Compared
with the conventional “two-step” approach, the whole-core transport
calculation can provide more precise physical quantities at the expense
of time and memory (Yuk and Cho, 2015). At the present stage, three-

dimensional (3-D) method of characteristics (MOC) encounters great
obstacles due to the huge computational overhead. Recent studies have
focused on the two-dimensional (2-D)/one-dimensional (1-D) coupled
transport calculation (Joo et al., 2004; Tang et al., 2017; Yuk and Cho,
2015; Zhu et al., 2015a,b). Generally, 2-D MOC is used in the radial
direction where most inhomogeneity occurs, and different varieties of
1-D difference methods such as diffusion and SN are adopted in the
axial direction (Zhu et al., 2015a,b).

The 2-D adjoint transport solutions have been investigated by many
researchers in lattice codes (Han et al., 2015; Pusa, 2012; Shokueifar
et al., 2016). The MOC and 3-D coarse mesh finite difference (CMFD)
adjoint methods have been achieved in MPACT (Zhu et al., 2015a,b).
However, few researchers attempt to solve the 2-D/1-D coupled adjoint
transport equations. It would be of interest to figure out the fine dis-
tribution of 3-D pin-by-pin adjoint flux. We aimed, therefore, to apply
the radial MOC and axial SN to solve the forward-adjoint Boltzmann
equation, and then verify the validity via kinetics parameter solutions.

KYCORE (Tang et al., 2017), developed by Nuclear Power Institute
of China, is a modern 2-D/1-D whole-core transport code designed for
the direct transport calculation without any assembly homogenization
steps. KYCORE uses the 2-D MOC and 1-D SN coupled by the radial and
axial leakage and accelerates the iteration convergence with 3-D CMFD.
An optimized procedure has been explored in KYCORE to decrease the
computational time and stabilize the convergence of the iteration (Tang
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et al., 2017). On the basis of KYCORE, we have developed a new code,
called KYADJ, to perform the forward-adjoint neutron transport cal-
culation. The paper mainly clarifies the theory and method of the for-
ward-adjoint neutron transport in detail, and then shows numerical
results for a ×3 3 lattice test problem and the C5G7 OECD/NEA 3-D
benchmarks. Eventually, the paper compares the point reactor kinetics
parameters with those calculated from the Reactor Monte Carlo (RMC)
code (Wang et al., 2015) for verification.

2. The forward-adjoint neutron transport solutions

In KYADJ, the steady 3-D neutron forward transport equations are
solved by the angular direction and energy discretization assuming
isotropic scattering. In the cylindrical coordinate system, the equations
can be written as
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where Ωm refers to the discrete angular direction, ω denotes the angle
between the projection of Ωm on the plane (er , eθ) and er , = ⋅ξ Ω em m r ,

= ⋅η Ω em m θ, = ⋅μ Ω em m z, r is the spatial position, g is the energy group
index, ψg is the angular flux, keff is the effective multiplication factor,
Σt g, Σs, χg, υ and ′Σf g, are the total cross section, the scattering cross
section, the fission neutron energy spectrum, the average number of
fission neutrons and the fission cross section, respectively. ′ϕg re-
presents the scalar flux approximated by quadrature formula:
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where ωm is the quadrature weight.
The corresponding steady 3-D neutron adjoint transport equations

can be shown as
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where ∗ψg and ∗ϕg are the adjoint angular flux and adjoint scalar flux, and
∗keff is the effective multiplication factor.
The procedure of the forward neutron transport equation solution

has been clarified exhaustively in the previous paper (Tang et al.,
2017). Hence we focus on the solving of the adjoint neutron transport
equation, especially its differences from the forward neutron transport
equation in this paper.

2.1. 2-D MOC adjoint equations

Suppose all cross sections remain unchanged within the axial region
− +z z[ , ]l l1/2 1/2 . Integrating both sides of Eq. (1) over the axial coordinate

z and dividing the axial mesh span Δzl, a serial of radial 2-D forward
equations can be obtained:
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where Qg m l, , and Lg m l
Axial
, , are defined as the total source term and the axial

leakage term, respectively. Note that only the change of flux along the r
direction is considered. The differential terms
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Once Qg m l, , and Lg m l
Axial
, , are provided, Eq. (4) can be solved by the 2-D

MOC which is discussed in detail in Chai's paper (Chai et al., 2016).
The corresponding 2-D MOC adjoint equations can be derived:
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where ∗Qg m l, , and ∗Lg m l
Axial
, , are defined as the total adjoint source term and

the axial adjoint leakage term is expressed as
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In comparison with the 2-D forward equations, the adjoint equa-
tions exchange υΣf g, with χg and transpose the P0 scattering matrix. The
first term in Eq. (7) and the leakage term have the inverse direction
with those in Eq. (4). In other words, if the total source term Qg m l, , is
replaced merely by the adjoint source term ∗Qg m l, , in Eq. (4), the 2-D
MOC solver can offer the adjoint angular flux ′

∗ψg m l, , , where the subscript
′m signifies the inverse direction with m.

2.2. 1-D SN adjoint equations

In a similar way, integrate both sides of Eq. (1) over the radial mesh
p and divide the area Δs. A serial of radial 1-D SN forward equations
can be obtained (Tang et al., 2017):
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where Qg m p, , is the total source term which has the same format as Eq.
(5). Lg m p

Radial
, , is the radial leakage provided by the 2-D MOC sweep that

Fig. 1. The code modules and efficient iteration strategy for forward-adjoint
calculation.
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