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ARTICLE INFO ABSTRACT

Picard Iteration is a widely used coupling method for multiphysics simulations. This method allows one to
directly leverage existing and well-developed single-physics programs without re-writing large portions of the
codes. In Picard Iteration, single-physics codes just iteratively pass solutions to each other as inputs until each
code has reached a converged solution. However, multiphysics computation linked by Picard Iteration is sus-
ceptible to over-solving, which can make the overall computation much less efficient. Over-solving means that
each single-physics code provides an accurate solution in each Picard Iteration, which is not necessary in
practice. Solving the single-physics codes in an inexact manner, i.e. with relaxed termination criteria, can help
avoid this problem. This work develops a modified Picard Iteration coupling method with adaptive, inexact
termination criteria for the underlying single-physics codes. Also, nested within the inexact Picard Iteration,
inexact Newton methods were applied in the single-physics codes. The effect on the overall computation effi-
ciency due to the inexact (relaxed) termination criteria at both levels is investigated by applying them to solve
reactor transient problems. A reactor dynamics problem with temperature feedback in one-dimensional slab
geometry is used to scope the behavior of nested inexact solvers. Then these methods are applied to a larger two-
dimensional Boiling Water Reactor (BWR) problem. Computational time savings reach 55% for the two-di-
mensional problem. Additionally, applying an inexact termination criterion (inexact Newton method) to each
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single-physics code results in a further time savings of up to 18%.

1. Introduction

Multiphysics modeling and analysis of nuclear reactor core and
system designs is one of the current thrusts in nuclear energy research.
New computational frameworks and codes have been developed to
execute multiphysics simulations incorporating coupled neutronic,
thermal-hydraulic, and mechanical behaviors in nuclear reactors
(Gaston et al., 2015; Palmtag et al., 2014; Siegel et al., 2007; Magedanz
et al., 2015; Chanaron et al., 2015). A multiphysics analysis that ac-
curately incorporates feedbacks from each physics process allows for
the best predictions of realistic system behaviors. This is in contrast to
conventional single-physics analysis where other physical processes are
approximated with fixed input parameters. For the analysis of nuclear
reactor transients, which are inherently “multi-physical,” the motiva-
tion for developing multiphysics codes is obvious. Rather than using
simplified thermal models and linear feedback coefficients, sophisti-
cated high-fidelity codes can be linked together for detailed analysis.
Much work is being done along these lines to enable multiphysics re-
actor simulations. Readers can find many examples in literature (Ivanov
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and Avramova, 2007; Bennett et al., 2016; Zerkak et al., 2015; Yilmaz
et al., 2017; Kochunas et al., 2017; Mahadevan et al., 2014; Leppédnen
et al., 2015; Ellis et al., 2017; Herman et al., 2015; Mylonakis et al.,
2014).

Conceptually, multiphysics coupling can be implemented in two
ways. One is the monolithic approach. All the equations that represent
different physics are formulated into a single solution scheme. The
different single-physics problems are treated as a single problem and
are solved simultaneously (Keyes et al., 2012). The coupling of different
physical models is implicitly accounted for in the solution scheme. The
monolithic approach is suitable for solving strongly coupled multi-
physics problems. The other coupling method is called the partitioned
approach. Multiple solvers are used and each tackles a different single-
physics problem. These solvers explicitly communicate their answers to
each other until the final converged solutions are obtained for all the
solvers (Tautges et al., 2011). Each solver has its own solution scheme
and is linked to other solvers by a coupling scheme (method). The
partitioned approach is much more popular because it allows the reuse
of legacy codes (Keyes et al., 2012; Ganine et al., 2013). This is
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important because the separate legacy codes use specialized methods
(Herman et al., 2015) and meshes (Hansen and Owen, 2008), which
may differ greatly between the single-physics problems. Using different
meshes for each single-physics problem greatly complicates (but does
not prevent (Mahadevan et al., 2012)) the utilization of the monolithic
approach. Furthermore, not all single-physics problems are strongly
coupled to each other, in which case the monolithic approach is su-
perfluous (Gaston et al., 2015). Of the partitioned methods, we focus on
Picard Iteration (also referred to as fixed-point iteration (Birken, 2015)
or Block Gauss-Seidel (Hamilton et al., 2016)), which iterates between
the single-physics problems until the coupled problem has converged.
But because each single-physics problem is solved independently and
repeatedly, Picard Iteration may suffer from poor performance (Keyes
et al., 2012). The poor performance stems from two aspects. One is that
Picard Iteration only attains a linear convergence rate. Acceleration
schemes can be applied to improve the multiphysics convergence rate
and stability. Several schemes have been developed (Macleod, 1986;
Walker and Ni, 2011) to address the issue of slow linear convergence
rates. The other primary cause of poor performance is generally re-
ferred to as over-solving, which is the focus of, and is addressed in, this
paper.

Over-solving is working to obtain a precise solution to an imprecise
problem. For example, there is no need to find an extremely precise
temperature distribution until the flux/power distribution has been
solved to a commensurate level of precision. However in standard
Picard Iteration, each single-physics problem is solved to full precision
at every iteration. This is not necessary because the solution keeps
changing as a function of the feedback from the other solver(s). Only
approximate solutions are needed until all of the solvers approach their
final converged solutions (in the last few Picard iterations). Over-sol-
ving is well-known in Newton methods where it is not necessary to
solve the linear system for the next update to great precision when the
current guess is still far from the exact solution (Dembo et al., 1982).
Over-solving in Newton solvers has been addressed with a variety of
strategies (Dembo et al., 1982; Eisenstat and Walker, 1996; Cai et al.,
1994; An et al.,, 2007; Ter, 2007), referred to as inexact Newton
methods. However, over-solving has not been thoroughly treated for
multiphysics problems and it presents more complexity than what a
single Newton solver faces. In multiphysics simulations using Picard
Iteration, there is a plurality of single-physics solvers interacting with
each other by iteratively exchanging solutions. Within these Picard
iterations, each constituent single-physics solver, depending on its so-
lution method, may have multiple levels of nested iterations—as is the
case with Newton-based methods. If so, over-solving may occur within
the single-physics solvers as well. Thus over-solving should be dealt
with at each level to attain better performance. Over-solving in multi-
physics is often addressed only as an afterthought in multiphysics
problems (Lipnikov et al., 2013; Clarno et al., 2015; Jareteg et al.,
2013), until recently (Birken, 2015). Our previous work (Senecal and Ji,
2017) focused solely on methods for reducing over-solving in parti-
tioned multiphysics problems, here we build upon that progress. The
present study focuses on multiphysics problems involving only two
single-physics solvers, each implementing a Newton-based method. The
basic strategy is to employ inexact methods to relax the termination
criteria at each level of iteration.

Inexact methods (methods that do not solve the inner level of a
nested problem to a tight numerical tolerance) are acceptable because
they still arrive at the correct solution. Assuming that the coupled
problem converges with standard termination criteria, Birken has
shown that the exact answer can still be obtained by using relaxed
tolerances in the constituent solvers, provided the tolerance approaches
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zero as the simulation progresses (Birken, 2015). He also provided
numerical results to support this conclusion; and in all of our example
problems the inexact methods arrive at the same solution as the exact
methods.

In our previous work (Senecal and Ji, 2017, 2015, 2016), several
methods were introduced that reduce over-solving. In addition to ap-
plying the best of these methods (the Residual Balance method) to
nuclear reactor transient problems, further improvements have been
developed in order to make it more broadly applicable. A further novel
contribution of the present work is to demonstrate the combined benefit
of removing over-solving on multiple levels (within both the multi-
physics and single-physics solvers).

Before proceeding further, several terms are defined for the sake of
clarity. “Global iterations” refer to solving each of the single-physics
problems and performing the associated data mapping operations.
“Constituent iterations” denote the iterations performed to solve a
single-physics problem. “Linear iterations” solve for the update step in
the Newton method. Throughout this paper the norm operator, |||,
refers to the Euclidean norm.

2. Numerical methods

A brief background on Picard Iteration is provided before describing
the Residual Balance method. Afterwards, inexact Newton methods are
discussed as a means to reduce over-solving in the single-physics sol-
vers.

2.1. Picard Iteration

Picard Iteration (PI) is a commonly used method for coupling
multiple physics codes. At each time step (steady-state problems have
only one “time step”), the algorithm executes the solvers sequentially
and iteratively. Because the constituent single-physics codes are exe-
cuted sequentially, they can be independent codes that have been de-
veloped previously (Mylonakis et al., 2014). Fig. 1 portrays the general
solution scheme for a Picard Iteration-based multiphysics solver in-
volving two single-physics solvers. Generally, weakly coupled problems
require few global iterations to resolve the feedbacks between the

Fig. 1. Schematic diagram of a partitioned multiphysics solver. The “Global” loop refers
to the Picard Iteration scheme that connects the single-physics codes. Each single-physics
solver is executed in a series of “Constituent” iterations. Finally the “Linear” iterations are
nested within the constituent iterations.
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