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a b s t r a c t

The quasi-static method is widely used for space- and time-dependent neutron transport problems. It is
based on the factorization of the flux into the product of two functions, an “amplitude” depending only
on time and a “shape” which depends on all variables. Thanks to this factorization, long time-steps can
be used for the computation of the shape, leading to a substantial reduction of the calculation time. Two
algorithms, based on the quasi-static factorization, can be found in the literature: the “Improved Quasi-
static Method” (IQM), and the “Predictor-Corrector Quasi-static Method” (PCQM).

In this paper we show, on the example of the Godiva experiment, that the IQM algorithm can be easily
adapted to multi-physics simulations. Moreover, most of the common coupling or time-step control
strategies are compatible with this algorithm and we test some of them here. In particular, a technique
taken from existing codes with point-kinetic modules and based on feedback coefficients is found, in our
case, to be especially efficient and gives precise and fast results. This shows that the multi-physics IQM
presented in this paper is compatible with these existing codes, and may be a way to couple them with
neutron transport solvers.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The quasi-static approach (introduced more than fifty years ago
by Allan Henry (Henry, 1958; Henry and Curlee, 1958)) is widely
used for solving space- and time-dependent neutron transport
problems. It is based on the factorization of the neutron flux into an
amplitude and a shape functions:

fðr;U; E; tÞ ¼ NðtÞjðr;U; E; tÞ: (1)

We introduce the diagonal “inertial operator” I1=V multiplying
the flux by the inverse of the neutron speed. < :; :> denotes the
classic scalar product. With these notations, the factorization (1) is
defined by a constraint on the shape:

v

vt

D
I1=Vj; f

E
¼ 0; (2)

where f is an arbitrary weighting function. The steady-state adjoint
flux f*

0 is usually chosen as weighting function, and is used in this
work.

There are two well-known ways of implementing the

factorization (1). The historical approach (Ott and Meneley, 1969;
Dahmani, 1999) is called “Improved Quasi-static Method” (IQM)
and is based on an amplitude (N in (1)) computation followed by a
shape (j in (1)) one. This procedure is repeated until a convergence
criterion on the constraint (2) is fulfilled. A more recent approach
(Dulla et al., 2008), called “Predictor-Corrector Quasi-static
Method” (PCQM) is based on a flux (f in (1)) computation fol-
lowed by an amplitude one, used to correct the flux prediction. No
iterations are made. Both methods use two different time-scales: a
micro one (dt) for the amplitude calculation and a macro one (Dt)
for the shape or flux calculation.

The structure of the IQM algorithm seems better suited for
solvingmulti-physics problems, and could lead to efficient coupling
strategies. The purpose of this paper is to highlight the potential of
IQM for multi-physics calculations, and to discuss some aspects of
its use in this frame. We illustrate this ideawith an original neutron
transport-thermomechanics coupling example: a prompt critical
burst of the Godiva experiment (Wimett, 1956), which provides a
strong and non-monotonic time-dependent coupling. CAST3M
(“CAST3M”, 2015), a finite element code dedicated to structural
mechanics, is used to compute the transient. In particular, a neutron
transport solver, presented in (Patricot et al., 2016) and able to deal
with irregular meshes, is used.* Corresponding author.
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Section 2 recalls the quasi-static method and its two ap-
proaches, IQM and PCQM. Section 3 presents the Godiva experi-
ment and the models used. Sections 4 and 5 discuss the transient
computation and compare some coupling strategies with, respec-
tively, fixed and variable time-steps. Finally, section 6 concludes the
paper.

2. The quasi-static method

2.1. The quasi-static equations

Consider the time-dependent neutron transport and delayed
neutron precursor equations:

8>>><
>>>:

I1=V
vf

vt
¼ L fþ Fpfþ

X
l

clllCl

vCl
vt

¼ �llCl þ
1
cl
Flf;

(3)

where Cl denotes the normalized concentration of delayed neutron
precursors of type l, L the transport operator including streaming,
absorption and scattering, Fp the prompt neutron production rate
operator, Fl the delayed neutron production rate operator and I1=V
the inertial operator. cl and ll are the delayed fission spectrum and
the decay constant of the precursor of type l.

Taking the scalar product of (3) with theweighting function, and
using (2), we obtain the point-kinetic equations satisfied by the
amplitude function:
8>>>>><
>>>>>:

vN
vt

¼ r� b

L
N þ

X
l

llcl

vcl
vt

¼ �llcl þ
bl
L
N:

(4)

The point-kinetic parameters are (F ¼ Fp þ
P
l
Fl is the total

neutron production rate operator):

r ¼
�ðL þ FÞj;f*

0

�
�
Fj;f*

0

� ; (5)

L ¼
D
I1=Vj;f*

0

E
�
Fj;f*

0

� ; (6)

bl ¼
�
Flj;f

*
0

�
�
Fj;f*

0

� ; (7)

b ¼
X
l

bl; (8)

cl ¼
�
clCl;f

*
0

�
D
I1=Vj;f*

0

E : (9)

The system of coupled equations satisfied by j and Cl is then
obtained by replacing the factorization (1) in (3):

8>>>><
>>>>:

I1=V
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(10)

2.2. The two quasi-static approaches

2.2.1. The improved quasi-static method (IQM)
The IQM, introduced first in (Ott and Meneley, 1969), consists in

solving the two coupled systems of equations (4) and (10). The
algorithm can be summarized as follows (c is a convergence crite-
rion chosen by user):

- Step 1: The point-kinetic equations (4) are solved first, over a
macro time interval Dt, using micro time-steps dt.

- Step 2: Knowing the amplitude and its time derivative at t þ Dt,
the shape equations (10) are then solved, directly with Dt as a
time-step.

- Step 3: The error ε on the normalization (2) is evaluated and the
shape is renormalized. This is necessary because the point-
kinetic equations assume that the shape satisfies the normali-
zation condition (2).

- Step 4: Point kinetic parameters are computed.
- Step 5: Step 1e4 are iterated until ε< c.

Several numerical schemes are possible on this basis.

2.2.2. The predictor-corrector quasi-static method (PCQM)
In the PCQM (Dulla et al., 2008) the flux equations (3) are

coupled with the point-kinetic ones (4). The algorithm can be
summarized as follows:

- Step 1: The flux equations (3) are solved first, over a macro time-
step Dt.

- Step 2: An approximate shape function is derived at t þ Dt from
the flux of step 1 and condition (2).

- Step 3: Point-kinetic parameters are evaluated and the point-
kinetic equations (4) are solved, over the macro time interval
Dt using micro time-steps dt.

- Step 4: Flux is reconstructed as the product of the shape of step 2
and of the amplitude of step 3.

- Step 5: Precursor concentrations are recomputed with this new
flux.

Here again, details of the implementation can vary.

2.2.3. Block diagrams
Block diagrams for the two algorithms are sketched in Fig. 1:

Fig. 1. Block diagrams for IQM and PCQM calculation of a time-step.
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