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a b s t r a c t

A multilevel iterative method for solving multigroup neutron transport k-eigenvalue problems in two-
dimensional geometry is developed. This method is based on a system of group low-order quasidiffu-
sion (LOQD) equations defined on a sequence of coarsening energy grids. The spatial discretization of the
LOQD equations uses compensation terms which make it consistent with a high-order transport scheme
on a given spatial grid. Different multigrid algorithms are applied to solve the multilevel system of group
LOQD equations on grids in energy. The eigenvalue is evaluated from the LOQD problem on a coarsest
grid. To further improve the efficiency of iterative schemes hybrid multigrid algorithms are developed.
The numerical results of tests with a large number groups are presented to demonstrate performance of
the proposed iterative schemes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The k-eigenvalue problem for the neutron transport (Boltz-
mann) equation is given by

U,Vjþ Stj ¼ S sjþ 1
k
S fj; (1)

where j ¼ jðr;U; EÞ is the neutron angular flux, r is the spatial
position, U is the direction of particle motion, E is the particle en-
ergy. The operator on the left-hand side accounts for particle
streaming and collisions. The integral operators S s and S f
describe scattering and fission processes. The multiplication factor
of a physical system is the largest eigenvalue. The k-eigenvalue
problem (1) is used to determine critical parameters of nuclear
reactors.

There exist several iterative approaches for solving the multi-
group transport equation. One family of methods is based on the
synthetic acceleration approach (Adams and Larsen, 2002). An
example of such a method is the two-grid acceleration scheme
developed to speed up iterations in fixed-source transport prob-
lems with upscattering (Adams and Morel, 1993). This method uses

a one-group diffusion problem for the iterative error. The one-
group diffusion coefficient and cross sections are defined by
means of a special spectral shape function that approximates the
Fourier harmonic of the solution converging at the slowest rate.

A different group of iterative schemes applies the nonlinear-
projective iterative (NPI) methodology and effectively reduces the
dimensionality of the transport problem (Anistratov and Gol'din,
1993). The quasidiffusion (QD) method belongs to this group
(Gol'din, 1964). The multilevel QD (MLQD) method for solving
multigroup problems is defined by the three-level system of
equations consisting of (Gol'din,1982; Anistratov and Gol'din,1986;
Gol'din et al., 1986; Anistratov and Gol'din, 2011)

� the high-order multigroup transport equations for the group
angular flux,

� the multigroup low-order QD (LOQD) equations for the mo-
ments of the group angular flux, i.e. the group scalar flux and
current,

� the effective one-group LOQD problem for the total scalar flux
and current.

This hierarchy of equations is closed by means of exact relations
defined by linear-fractional factors which are calculated with the
solution of the high-order problem. In the MLQD iteration scheme,
the eigenvalue is determined as the solution of the problem with
the smallest dimensionality, namely, of the effective one-group
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LOQD equations. Its elements can be applied to different NPI
methods for solving the transport equation. This methodology was
used to develop the multilevel nonlinear diffusion acceleration
(NDA) method (Smith and Rhodes, 2002; Anistratov, 2013). It is
defined by means of the multigroup and effective one-group low-
order NDA equations. Another version of the multilevel NDA
method is formulated on a set of coarsening energy grids (Cornejo
and Anistratov, 2016). It was shown that introducing additional
coarse energy grids can improve acceleration of transport
iterations.

One more way to solve the k-eigenvalue transport problem is to
treat it as a generalized eigenvalue problem and apply Nonlinear
Krylov acceleration and Jacobian-Free Newton-Krylov methods
(Gill et al., 2011;Park et al.,2012; Calef et al., 2013; Willert et al.,
2014). The iterative methods developed on such basis demon-
strated efficiency of this approach. Multigrid in energy precondi-
tioners have also been used for Krylov solvers (Slaybaugh et al.,
2013).

In this paper we present a new multilevel QD method in which
the group LOQD equations are formulated on a sequence of coars-
ening grids in energy. The low-order equations on coarse energy
grids are used to accelerate the convergence of transport iterations.
Different multigrid algorithms are used to solve this set of low-
order equations. The eigenvalue is obtained in the space with the
lowest dimensionality, namely, as a solution of a one-group
eigenvalue LQOD problem. A consistent discretization of the
LOQD equations is developed. It is based on a second-order finite
volume scheme and uses special compensation (consistency)
terms. Thus the proposed multilevel method is a pure acceleration
method. The proposed method can be interpreted as a nonlinear
multigrid method and described in terms of projection and pro-
longation operators (Briggs et al., 2000; Trottenberg et al., 2001).
The main difference between the MLQD method and multigrid
methods is that the equations of the MLQD method are formulated
for the solution. Most multigrid algorithms are based on equations
for iterative errors.

The remainder of this paper is organized as follows. In Sec. 2 we
define the multigroup LOQD equations and describe their spatial
discretization. The proposed multilevel QDmethod on a set of grids
in energy is formulated in Sec. 3. In Sec. 4 we present numerical
results for typical reactor-physics test problems. We conclude with
a discussion in Sec. 5.

2. Discretization of the multigroup low-order quasidiffusion
equations

We consider multigroup k-eigenvalue transport problems with
isotropic scattering in 2D Cartesian geometry

fgðr;UÞ��r2vGvac
¼ 0 and fgðr;UÞ

���
r2vGref

¼ fgðr;U�Þ
���
r2vGref

for n,U<0; (3a)

U�,n ¼ �U,n; n,U�U� ¼ 0; (3b)

g ¼ 1;…;Ng ;

where the standard notations are used. Here vG is the boundary of
the domain G. vGvac is the vacuum part of the boundary, vGref is the
reflective part of the boundary and n is the outward normal of the
boundary. The multigroup LOQD equations for the group fluxes and
currents are derived by taking the zeroth and first moment of the
transport equation (2) (Gol'din, 1964; Anistratov and Gol'din, 2011).
They are given by

V,Jg þ St;gfg ¼
XNg

g0¼1

Ss;g0/gfg0 þ cg
k

XNg

g0¼1

nf ;g0Sf ;g0fg0 ; (4)

V,
�
Egfg

�þ St;gJg ¼ 0 ; (5)

where

Eab;g ¼

Z
4p

UaUbjgdU

Z
4p

jgdU
; a; b ¼ x; y (6)

are the components of the QD (Eddington) tensor Eg that is defined
to close the system of high-order transport and LOQD equations (2),
(4) and (5). The boundary conditions for the LOQD equations are the
following:

n,Jg
���
r2vGref

¼ 0; n,Jg
��
r2vGvac

¼ Cn;gfg
��
r2vGvac

; (7)

where the boundary factor is defined as

Cn;g ¼

Z
U,n�0

n,UjgdU

Z
U,n�0

jgdU

���������
r2vGvac

: (8)

We consider rectangular spatial grids and discretize the LOQD
equations by means of a second-order finite volume method. The
balance equation (4) is integrated over each cell ði; jÞ to obtain

U,Vjgðr;UÞ þ St;g rð Þjgðr;UÞ ¼ 1
4p

XNg

g0¼1

Ss;g0/g rð Þ
Z
4p

jg0 ðr;UÞdU

þcg rð Þ
4pk

XNg

g0¼1

nf ;g0 rð ÞSf ;g0 rð Þ
Z
4p

jg0 ðr;UÞdU; r2G;

(2)
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