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a b s t r a c t

This work presents a brief review of numerical methods for nuclide depletion calculations and a sum-
mary of several practical techniques for improving computational speed and reducing memory usage in
large-scale Monte Carlo reactor depletion calculations. The techniques covered in the paper include: 1)
the use of data hierarchy, 2) separation of absorbing and non-absorbing (precursor) nuclides, 3) opti-
mizations for a backward differentiation formula (BDF) numerical solver, 4) the use of simplified
(reduced-order) depletion systems, and 5) the use of a residual fission product absorption correction
term to account for the cumulative reactivity effect of nuclides that are not explicitly depleted. In
addition, the paper describes several implementation and data management strategies used in the MC21
code, which have proven beneficial for large depletion calculations. A description of these various
techniques and strategies are presented along with results from scaling studies and representative
reactor depletion calculations that demonstrate the effectiveness of these methods. The results from
these studies suggest that large-scale MC depletion calculations including tens- to hundreds-of-millions
of depletable material compositions are practical on contemporary mid-range computing clusters.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past several decades there has been sustained interest
in performing large-scale reactor depletion calculations driven by
Monte Carlo radiation transport. This interest has motivated sig-
nificant research and development efforts in this area, including the
investigation of improved coupling/time-discretization schemes
(Isotalo and Aarnio, 2011a, 2011b; Isotalo and Sahlberg, 2015;
Isotalo, 2015; Kotlyar and Shwageraus, 2013), development of
more efficient depletion solvers (Isotalo and Sahlberg, 2015; Isotalo,
2015; Kotlyar and Shwageraus, 2013; Pusa, 2011, 2016; Pusa and
Lepp€anen, 2010, 2012; Hykes and Ferrer, 2013), and studies of nu-
merical stability (Dufek et al., 2013; Dufek and Hoogenboom, 2009;
Densmore et al., 2013) and propagation of statistical uncertainty
(Park et al., 2011; Newell and Sanders, 2015) in multi-timestep
depletion calculations. This research, coupled with increases in
available computing power, has made full-core Monte Carlo
depletion calculations feasible with the current generation of solver

codes and computer hardware. Presently, several major Monte
Carlo transport codes, such as MC21 (Griesheimer et al., 2015a),
TRIPOLI (Brun et al., 2015), MVP (Nagaya et al., 2015), Serpent
(Lepp€anen et al., 2015), and Shift (Davidson et al., 2016), include
integrated depletion solvers and have been used for high-fidelity
depletion calculations of full-core commercial reactor benchmark
problems.

To date, most research in the area of Monte Carlo depletion has
focused on the details of solving the Bateman depletion equations.
Much of this work, in turn, is built upon decades of research and
experience with depletion calculations driven by deterministic
diffusion or transport solvers, which has been extended to account
for the statistical uncertainty inherent in the MC estimates for local
flux and/or reaction rates. This previous work, for both determin-
istic and stochastic transport solvers, has established that there are
many different time-discretization strategies and matrix-
exponential solvers that can be used for reactor depletion calcula-
tions (Isotalo and Sahlberg, 2015; Isotalo, 2015; Hykes and Ferrer,
2013). However, high-fidelity full-core reactor depletion calcula-
tions remain challenging due to sheer problem size, regardless of
the solution strategy employed. For example, depletion calculations
for commercial light water reactors typically subdivide each fuel
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element into between 50 and 4000 depletable compositions
(assuming axial segments between 1 and 10 cm in height and 1 to
10 radial sub-regions per element). Thus, a large light water reactor
(LWR) with 65,000 fuel elements may include over 250 million
depletable compositions.

In this paper, we describe a collection of practical techniques for
reducing both the computational cost and memory requirements
for large-scale MC reactor depletion calculations e while still pre-
serving accuracy in the calculated system reactivities and flux
distributions through life. Together, these techniques enable accu-
rate, high-fidelity MC reactor depletion calculations on contem-
porary computing hardware, while minimizing or eliminating the
need for complex data-partitioning methods, such as domain
decomposition. In addition, we describe several practical imple-
mentation and data management strategies used in the MC21 code,
which have proven beneficial for large depletion calculations. It
should be noted that, while many of the techniques presented in
this paper were originally motivated by the development of the in-
line depletion capability in MC21, the techniques are generally
applicable to many types of coupled transport-depletion solvers,
including systems that use deterministic rather than stochastic
transport.

2. Numerical methods for solving depletion equations

The problem of computing the time-dependent change in
nuclide concentrations for a single material composition is repre-
sented in its most general form as a system of linear ordinary dif-
ferential equations (ODEs) with variable coefficients,

_NðtÞ ¼ AðtÞNðtÞ; Nðt0Þ ¼ N0; (1)

where NðtÞ is a vector of length n containing the concentrations for
each nuclide, _NðtÞ is the time derivative (d/dt) of the vector NðtÞ, N0
is a vector of initial atom densities, and AðtÞ is an n � n matrix
containing coupling coefficients between the nuclides. Typically,
systems of depletion equations are stiff, meaning that the coupling
coefficients vary over orders of magnitude. The time scales of in-
terest can also vary over many orders of magnitude, typically
ranging from hours to years for in-core reactor burnup and shut-
down calculations, to millions of years for spent fuel disposal
studies.

The rate of change of concentration for a given nuclide as a
result of undergoing neutron transmutation and radioactive decay
is governed by the differential equation,

dNi

dt
¼ Pi þ

X
j

gxj NjðtÞ �
�
li þ Aa

i

�
NiðtÞ; (2)

where

Pi ¼ production due to direct fission ¼ P
ky

k
i S

k, where yki is the
yield fraction for nuclide i from the k-th fissile nuclide under-
going fission at a rate Sk,
liNi ¼ loss due to radioactive decay of nuclide i, where li is the
decay constant for nuclide i,
Aa
i Ni ¼ loss due to neutron absorption in nuclide i, where the

absorption rate is defined as Aa
i ¼ R∞

0 siaðEÞ fðEÞ dE, sia Eð Þ is the
total absorption cross section for nuclide i at energy E, and fðEÞ
is the scalar neutron flux at that same energy.
gxj Nj ¼ production due to transmutation from precursor j, where

gxj ¼ bjlj or bjAx
j (depending on the type of coupling from the

precursor), bj is the branching fraction from the precursor, Ax
j is

(analogous to) the absorption term where x denotes a specific
type of neutron reaction, including (n,n0), (n,2n), (n,3n), (n,g),
(n,a), (n,p), (n,d) and (n,t).

One key difference among solution techniques for the Bateman
equations is the approximation used for the time-dependence co-
efficient matrix AðtÞ. A comparison between the various approxi-
mations is presented in the following subsections.

2.1. Constant rate solution methods

Themost basic approximation for the time dependence of AðtÞ is
to assume that the coefficient matrix is constant over the timestep.
This assumption implies that the microscopic (i.e., density
normalized) nuclide reaction rates are constant over the depletion
timestep, and is sometimes referred to as a constant reaction rate,
constant flux (Carpenter, 2009), or constant extrapolation (CE)
assumption (Isotalo and Sahlberg, 2015). Under this assumption,
Eq. (1) simplifies to

_NðtÞ ¼ ANðtÞ; Nðt0Þ ¼ N0; (3)

which has the analytical solution

NðtÞ ¼ Nð0ÞeAt : (4)

As noted in a 2003 review paper (Moler and Van Loan, 2003), a
variety of different numerical techniques exist for solving the ma-
trix exponential equation shown in Eq. (4). However, many of the
general approaches for solving matrix exponential systems are not
able to handle stiff systems, such as typically found in nuclide
depletion calculations. In the past, many depletion solvers such as
ORIGIN2.2 (Croff, 1980) and VESTA (Haeck et al., 2012, 2016) have
simplified depletion relationships by removing short-lived nuclides
in order to reduce the stiffness of the depletion systems. After the
reduced system has been solved, the densities of the omitted short-
lived nuclides are determined via an equilibrium calculation. In
recent years, the Chebyshev Rational Approximation Method
(CRAM) has become an especially popular matrix exponential
solver in nuclide depletion solvers (Pusa, 2016, 2011; Pusa and
Lepp€anen, 2012, 2010), due to its ability to handle stiff systems of
equations without the need for simplifying approximations.

The primary benefit of the constant coefficient matrix (i.e.,
constant reaction rate) assumption is simplicity. Matrix exponential
solution methods are readily available and relatively straightfor-
ward to implement. Furthermore, the change in number densities
during a timestep can be computed from a single call to the matrix
exponential solver. However, the constant coefficient assumption
does not account for the fact that the nuclide reaction rates (and
hence the depletion coupling coefficients) are continuously
changing due to shifts in the spatial and energy distribution of the
neutron flux within each depletion region. This redistribution of
flux over time is driven by changes in the relative concentrations of
nuclides due to burnup and transmutation, as well as changes in
reactor operating conditions (e.g., changes in control rod position,
coolant flow rate, power/temperature changes, etc.). As a conse-
quence, single-shot constant-coefficient depletion methods that
use only one matrix exponential solution per timestep are typically
limited to extremely short timestep sizes in order to ensure sta-
bility (Densmore et al., 2013) and achieve reasonable accuracy in
calculated end-of-timestep nuclide concentrations. In a 2009 study,
Carpenter reported that timestep lengths �3 h were required to
reduce the relative error in depleted 155Gd and 157Gd concentra-
tions at the end of a 700-day reactor operating cycle to 0.1% and
0.3%, respectively, when using a constant coefficient approximation
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