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Abstract

Experiment plans formed by combining two or more designs, such as orthogonal arrays primarily with 2- and 3-level factors, creating

multi-level arrays with subsets of different strength are proposed for computer experiments to conduct sensitivity analysis. Specific

illustrations are designs for 5-level factors with fewer runs than generally required for 5-level orthogonal arrays of strength 2 or more. At

least 5 levels for each input are desired to allow for runs at a nominal value, 2-values either side of nominal but within a normal,

anticipated range, and two, more extreme values either side of nominal. This number of levels allows for a broader range of input

combinations to test the input combinations where a simulation code operates. Five-level factors also allow the possibility of up to

fourth-order polynomial models for fitting simulation results, at least in one dimension. By having subsets of runs with more than

strength 2, interaction effects may also be considered. The resulting designs have a ‘‘checker-board’’ pattern in lower-dimensional

projections, in contrast to grid projection that occurs with orthogonal arrays. Space-filling properties are also considered as a basis for

experiment design assessment.
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1. Introduction

The context for this paper is planning runs of a non-
stochastic computer code for the purpose of assessing
important inputs from among p inputs. As in McKay [1],
the goal of sensitivity analysis is to identify ‘‘important’’
input(s) and this is done based on comparison of R2, an
estimate of the correlation coefficient associated with the
goodness of fit to the computer code output Y of an
analysis of variance model based on a subset of inputs Xs.
A subset of inputs Xs is considered more ‘‘important’’ than
another if its corresponding R2 is larger. The following is a
formula for R2 based on a subset of inputs Xs:

R2ðX sÞ ¼

P
i2X s

P
jðyi:� y::Þ2

P
i2X s

P
jðyij � y::Þ2

,

where the subscript i varies over distinct cases of values of
the s inputs identified in Xs, the subscript j varies over
‘‘replicate’’ experiments corresponding to a fixed value of

the inputs Xs, and the ‘‘dot’’ subscript indicates the
standard average. The summation over j, in both the
numerator and denominator, depends on the number of
actual observations (‘‘replicates’’) and may differ for each
of the i distinct values of the s inputs identified in Xs.
Although the summand in the numerator of this expression
does not depend on j, the notation emphasizes R2ðX sÞ as a
relative comparison of the sum of squares replacing the
data with a regression predictor (numerator) and the total
sum of squares (denominator). Here the regression is non-
parametric in that no particular relationship is assumed
between the response and s inputs other than a different
mean value for each distinct value of the s inputs that occur
in X s. This is exactly the setting of (unbalanced) analysis of
variance with treatment classes defined by partitioning the
responses according to the distinct values of X s. Different
subsets of the full set of p parameters may define different
partitions of the response values.
Fig. 1 illustrates an assessment of relative importance of

two inputs based on the R2 value associated with each of
the inputs, referred to as factors A and B in the figure. All
of the response values are plotted on the center horizontal
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axis. The sum of squares of these values adjusted by their
mean value, labeled by ‘‘o’’ just under the axis, is the
denominator of the formula for R2. Above the horizontal
axis, the response values are partitioned according to the
values (3 in this case) of factor A and are marked with an
‘‘x’’. Within each of the resulting partitions, the average is
marked above the set of partitioned values with an ‘‘o’’.
The numerator of the formula for R2ðAÞ is a weighted sum
of the squares of the averages of the partitioned values
adjusted by the grand mean for all of the data. The number
of response values in each partition determines the weights.
Below the axis, the response values, marked with an ‘‘x’’
are partitioned according to the value of factor B with the
partitioned sets having means labeled ‘‘o’’ below the sets.
The numerator of R2ðBÞ is also calculated as the weighted
sum of the squares of the averages of the partitioned values
adjusted by the grand mean for all of the data. It is clear
that the adjusted mean values of the factor A partitioned
sets are more spread out, or there squares will be bigger
than those for the factor B partitioned sets, so that R2ðAÞ

will be larger than R2ðBÞ. Factor A, as a predictor accounts
for more of the total variance of the responses than factor
B and would be deemed a relatively more influential input.

The experiment-planning problem fundamentally is to
plan to collect measurements that will meet the needs of a
planned analysis, ideally as efficiently as possible. For
sensitivity assessment based on R2, and from considering
the illustration in Fig. 1, ‘‘replicate’’ measurements are
needed for a set of values of each of the inputs. ‘‘Replicate’’
is in quotes since no true replicates are done. The computer
simulation output is non-stochastic in that the output is
fully determined by specification of the input with no
variation in output for repeated runs of the code for
identical input. Variation in the output is induced solely by
variation in the inputs. However, the (p�s) inputs,

identified by X�s and associated with all inputs excluding
those identified in X s, may differ while X s is fixed. These
constitute ‘‘replicate’’ runs for a fixed value of X s. The
value yi. is identically yij if there are no ‘‘replicate’’ runs. If
this is the case for every value of the inputs identified by
X s, then R2 has value identically 1 and is not very useful for
identifying a subset of important inputs. Otherwise, R2 is
between 0 and 1. The desire to identify subsets of inputs
that are important leads to considering experiment designs
such that, for subsets of inputs of a specified size sop, a
sampling of values for that subset of inputs is required and
‘‘replicates’’ determined by a sample of values for the
remaining inputs occur, for at least one of the values of the
size s subset of inputs. This is a property of factorial
experiment designs, or orthogonal arrays, which naturally
suit this analysis approach, per Moore and McKay [2].
Factorial experiments are experiments for inputs, called

factors, with a finite number of discrete values, referred to
as levels, so if each input has K levels and there are p inputs
then there are Kp possible distinct runs referred to as the Kp

factorial design space. The K levels could be associated
with K equal probability content intervals for a continuous
input. If the experiment plan consisted of the entire Kp

factorial design space, then for each pair of inputs (subsets
of size s ¼ 2) there are K2 values (levels) with Kp�2

‘‘replicates’’ for each value. This extends to subsets of
inputs of size s in an obvious way. For relatively moderate
K and even small sizes for p the full product space of
possible experiment runs quickly becomes unmanageably
large, even given the ability to run the simulation code
thousands of times. In this paper, inputs with at least
K ¼ 5 levels are desired.
Orthogonal array experiment designs are subsets of full

factorial designs, also referred to as fractional factorial
designs, with reduced runs obtained by relaxing the
property that for any size, sop, subset of inputs there are
‘‘replicate’’ inputs for each value of the subset. Wu and
Hamada [3] and Hedayat et al. [4], are good references on
orthogonal arrays, in addition to several classic texts on
statistical experiment design and fractional factorial
experiments by John [5] and Raktoe et al. [6]. For K levels
identified by elements in the set L ¼ f0; 1; 2; . . . ; k � 1g, an
N� p array X with entries from L is an orthogonal array
with K levels, strength t (0ptpp) and index l if every
N � t subarray of X contains each t-tuple based on L

exactly l times as a row. An array with parameters N

(number of runs), p (number of factors), k (number of
levels for each factor), and t (strength) is denoted
OA(N,p,k,t). From this definition, a strength t orthogonal
array with index l is a set of p-dimensional factorial design
points such that if one considers any t-dimensional
projection then every point in the Kt factorial design space
is replicated l times. Likewise, any projection of dimension
smaller than t, say sot, consist of lK ðt�sÞ replicates of the
Ks factorial design space. A full KP factorial design space is
itself an OA(Kp, p, K, p) with index unity, that is l ¼ 1. In a
strict sense, fractional factorial designs may be any subset
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Fig. 1. A data set illustrating R2ðAÞ4R2ðBÞ. All data is partitioned

according to the value of Factor A above the horizontal axis, or Factor B

below the horizontal axis.
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