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a b s t r a c t

In this paper, the solution of multi-group neutron/adjoint equation using Finite Element Method (FEM)
for hexagonal and rectangular reactor cores is reported. The spatial discretization of the neutron diffusion
equation is performed based on two different Finite Element Methods (FEMs) using unstructured
triangular elements generated by Gambit software. Calculations are performed using Galerkin and
Generalized Least Squares FEMs; based on which results are compared. Using the power iteration
method for the neutron and adjoint calculations, the neutron and adjoint flux distributions with the
corresponding eigenvalues are obtained. The results are then validated against the valid results for the
IAEA-2D andBIBLIS-2D benchmark problems. The results of GFEM-2D (developed based on Galerkin
FEM) and GELES-2D (developed based on Generalized Least Squares FEM) computer codes are also
compared with results obtained from DONJON4 computer code. To investigate the validation of devel-
oped computer codes for the calculation with more than two energy groups, the calculations are per-
formed for a benchmark problemwith seven energy groups. To investigate the dependency of the results
to the number of elements, a sensitivity analysis of the calculations to the number of elements is
performed.

© 2015 Published by Elsevier Ltd.

1. Introduction

Numerical solution of differential equations arising in engi-
neering problems is usually based on finite difference, finite
element, boundary element or finite volume techniques. Other
numerical methods like Direct Discrete Method (DDM)
(Ayyoubzadeh et al., 2012) and (Vosoughi et al., 2003) may also be
used to solve the specific problems. In general, the Finite Element
Methods (FEMs) is preferred in most applications to its principal
alternative, the Finite Difference Method (FDM), due to its flexi-
bility in the treatment of curved or irregular geometries and the
high rates of convergence attainable by the use of high order ele-
ments. The first application of FEM to the theory of neutron diffu-
sion dates back to 1970s (Kang and Hansen, 1973). The
development in the application of FEM to the neutron diffusion
equation has been described in the excellent treatise of Lewis
(Lewis, 1981). Recently, several other applications of FEMs
including Raviart-Thomas-Schneider, Hybrid, h-adaptivity,

Response Matrix, etc. to solve neutron diffusion equation has been
introduced (H�ebert, 2008), (Cavdar and Ozgener, 2004) and (Wang
et al., 2009).

In the current study, the Galerkin FEM (GFEM), a weighted re-
sidual method, is used to solve the multi-group neutron/adjoint
diffusion equation for hexagonal and rectangular reactor cores. For
several reasons, such as desired precision, yet being simple, the
Galerkin method has been widely used in the development of
computer codes for solving the diffusion or transport equation in
different geometries (Maiani and Montagnini, 2004). The main
advantage of GFEM is that the definition of boundary conditions in
this method is easier than the other methods (Zhu et al., 2005),
(Hosseini and Vosoughi, 2013).

In this paper, the neutron/adjoint flux and neutron multiplica-
tion factor are obtained frommulti-group neutron/adjoint equation
using developed GFEM-2D and GELES computer codes. Unstruc-
tured triangular finite elements generated by the Gambit software
(Gambit, 2006) are used to discretize the equations. Indeed, a key
advantage of the unstructured triangular elements is their superi-
ority in mapping the curved boundaries or material interfaces.

An outline of the remainder of this contribution is as follows: In* Corresponding author.
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Section 2, we briefly introduce the mathematical formulation used
to solve the neutron/adjoint diffusion equation. Two approaches
based on Galerkin and Generalized Least Squares Finite Element
Methods (FEMs) are presented in the Section 2. Section 3 presents
the main specification of the BIBLIS-2D (Varin et al., 2004), IAEA-2D
(Center, 1977), VVER440-2D (Chao and Shatilla, 1995) and seven
energy groups (Center, 1977) benchmark problems. The results
obtained from GFEM-2D (developed computer code based on
Galerkin FEM) and GELES-2D (developed computer code based on
Generalized Least Squares FEM) are presented in Section 4. In
Section 5, we discuss the results obtained from the GFEM-2D and
GELES-2D computer codes and advantages of applying the un-
structured triangular elements. Section 6 gives a summary and
concludes the paper.

2. Mathematical formulation

2.1. Discretization of the neutron diffusion equation

2.1.1. Galerkin finite element method
In the absence of external neutron source, the multi-group

neutron diffusion equation is as Eq. (1) (Duderstadt and
Hamilton, 1976), (Lamarsh, 1966):

�V$DgðrÞVFgðrÞ þ Sr;gðrÞFgðrÞ ¼
cg

keff

XG
g0¼1

nSf ;g0 ðrÞFg0 ðrÞ

þ
X
hsg
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g ¼ 1; 2; …; G

(1)

where, all quantities are defined as usual.
Eq. (1) is a linear partial differential equation which may be

solved by different numerical methods. All of these methods

transform the differential equation into a system of algebraic
equations. Here, GFEM, a weighted residual method, is used to
discretize the neutron diffusion equation. To start the discretiza-
tion, the whole solution area is divided into the unstructured
triangular elements as shown in Fig. 1. These elements have been
generated using Gambit mesh generator. In the linear approxima-
tion of shape function, the neutron flux in each element could be
considered as Eq. (2) (Zhu et al., 2005):

FðeÞðx; yÞ ¼ NðeÞ
i ðx; yÞFi þ NðeÞ

j ðx; yÞFj þ NðeÞ
k ðx; yÞFk (2)

where, NðeÞ
i , NðeÞ

j and NðeÞ
k are the components of the shape function.

In the linear approximation, these components are equal to the
corresponding LðeÞn ðx; yÞ as Eq. (3):

LðeÞn ðx; yÞ ¼ an þ bnxþ cny

2DðeÞ n ¼ i; j; k (3)

in which

ai ¼ xjyk � yjxk; bi ¼ yj � yk; ci ¼ xk � xj (4)

aj ¼ xkyi � ykxi; bj ¼ yk � yi; cj ¼ xi � xk (5)

ak ¼ xiyj � yixj; bk ¼ yi � yj; ck ¼ xj � xi (6)

and

2DðeÞ ¼
������
1 xi yi
1 xj yj
1 xk yk

������ (7)

The components of the shape function satisfy the criterion given
in Eq. (8) at all points of the domain:

NðeÞ
i ðx; yÞ þ NðeÞ

j ðx; yÞ þ NðeÞ
k ðx; yÞ ¼ 1 (8)

here, the weighting function is considered as Eq. (9) to apply the
Galerkin FEM:

WðrÞ ¼ NðrÞ (9)

Multiplying Eq. (1) by the weighting function and integrating
the results over the solution space, Eq. (10) is obtained:
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(10)

in above equation, the differential part may be transformed by
applying the Green's theorem:

Abbreviations

FEM finite element method,
Fg(r) neutron flux in energy group g,
keff neutron multiplication factor,
cg neutron spectrum in energy group g,
f
y
g adjoint flux in energy group g,

Dg diffusion constant in energy group g,
Sa,g macroscopic absorption cross section in energy

group g,
Sr,g macroscopic removal cross section in energy group

g,
Sf,g macroscopic fission cross section in energy group g,
Sh/g macroscopic scattering cross section from energy

group h to g,
y fission neutron yield,
V the nabla operator.
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