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a b s t r a c t

Mass distributions of fission fragments of U and Pu isotopes at low excitation energies are studied using a
dynamical model based on the fluctuation-dissipation theorem formulated as Langevin equations.
Though the Langevin approaches have been applied successfully to the fission process at high excitation
energy, it is the first time to obtain the mass distribution of fission fragments for the neutron-induced
fission of 233,235U and 239Pu. It was found that the shell effect of the potential energy landscape has
the dominant role in determining the mass distribution. The calculation results show the asymmetric
fission and the good agreement with the experimental data without any parameter adjustments. Using
this approach, we obtain the independent protons and neutrons fission yields of n þ 233U. The present
approach can serve as a basis for more refined analysis being planned in the future aiming at a realistic
description of the whole process of fission, starting from the compound nuclei at various excitation
energies reaching to the fission products populated after b-decay.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The discovery of nuclear fission (Hahn and Straßmann, 1939;
Meitner and Frisch, 1939) opened an important chapter not only in
the study of nuclear physics but also in the technology of energy
supply. Further understanding of the fission process has been
required to quantitatively predict the amounts of heavy elements
and radioactive fission products and the amount of melted spent
nuclear fuel still present in the remains of the power plant. More-
over, such information is also important for improving the safety of
planned nuclear power plants world wide. Therefore, further study
of the nuclear fission process is necessary.

Just after the discovery of nuclear fission, it was interpreted in
analogy with the fission of a charged liquid drop (Bohr and
Wheeler, 1939). However, this concept could not explain asym-
metric mass splitting, which is the dominant mode of fission in
nuclear fuel, namely, U and Pu nuclei. Mass-asymmetric fission, for
example, by the thermal-neutron-induced fission of Th, U, and Pu
nuclei, might be linked to the microscopic structure of fissioning
nuclei or fragments. However, the origin and mechanism of mass-
asymmetric fission have not yet been clarified.

To clarify the above contradiction and give a possibly unified

picture of the fission process, it is necessary to introduce a
dynamical model of fission starting from a nearly spherical shape
and finishing at the scission region via the fission saddle point. Such
a shape evolution proceeds in competition with pre-scission par-
ticle emissions; thus, a dynamical treatment is essential.

As such an approach, the method involving Langevin equations
based on the fluctuation-dissipation theorem has been applied by
several groups to the nuclear fission process. These past in-
vestigations focused on systems having high excitation energy. The
calculations resulted in a symmetric mass distribution of fission
fragments (MDFF), in good agreement with experimental data at
high excitation energies. The MDFF reflects the properties of the
potential energy surface in the liquid drop model. In contract, the
dynamical calculation using Langevin equations has been seldom
applied to the fission process at low excitation energies (Asano
et al., 2004), owing to difficulties in obtaining the shell correction
energy of configurations in the multi-dimensional space of collec-
tive coordinates, as well as the huge computation time. However,
the computation time has recently been dramatically reduced with
the recent advances in computer technologies and the utilization of
parallel computing. Moreover, we can calculate the shell correction
energy at each configuration using the two-center shell model.

In this paper, we propose the possibility of dynamically calcu-
lating the fission process at a low excitation energy using Langevin
equations, taking into account the shell effects, pairing effects,
dissipation and fluctuation. Using thismodel, we calculate theMDFFs
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of n þ 235U, n þ 233U, and n þ 239Pu at a low excitation energy and
compare them with experimental data, and obtain the independent
fission yield. Using this approach, we can investigate the fission
mechanism, including the origin of mass-asymmetric fission.

The paper is organized as follows. In Sec. II, we detail the
framework of the model. In Sec. III, we show the results for MDFF
for n þ 235U, n þ 233U, and n þ 239Pu at the excitation energy
E* ¼ 20 MeV, and the independent fission yields. In Sec. IV, we
present a summary of this study and further discussion.

2. Model

We use the fluctuation-dissipation model and employ Langevin
equations (Aritomo and Ohta, 2004) to investigate the dynamics of
the fission process. The nuclear shape is defined by the two-center
parametrization (Maruhn and Greiner, 1972; Sato et al., 1978),
which has three deformation parameters, z0, d, and a to serve as
collective coordinates: z0 is the distance between two potential
centers, while a ¼ (A1 � A2)/(A1 þ A2) is the mass asymmetry of the
two fragments, where A1 and A2 denote the mass numbers of heavy
and light fragments (Aritomo and Ohta, 2004). The symbol d de-
notes the deformation of the fragments, and is defined as
d ¼ 3ðRk � R⊥Þ=ð2Rk þ R⊥Þ, where Rk and R⊥ are the half length of
the axes of an ellipse in the z0 and r directions of the cylindrical
coordinate, respectively, as shown in Fig. 1 in Ref. Maruhn and
Greiner (1972). We assume in this work that each fragment has
the same deformation. This constraint should be relaxed in the
future work since the deformations of the heavy and light frag-
ments in the fission of U region are known to be different from each
other. In order to reduce the computational time, we employ the
coordinate z defined as z ¼ z0/(RCNB), where RCN denotes the radius
of a spherical compound nucleus and B is defined as B ¼ (3 þ d)/
(3 � 2d). We use the neck parameter ε ¼ 0:35, which is recom-
mended in Ref. (Sato et al., 1978) for the fission process. The three
collective coordinates may be abbreviated as q, q ¼ {z, d, a}.

For a given value of a temperature of a system, T, the potential
energy is defined as a sum of the liquid-drop (LD) part, a rotational
energy and a microscopic (SH) part;

Vðq; [; TÞ ¼ VLDðqÞ þ
Z2[ð[þ 1Þ

2IðqÞ þ VSHðq; TÞ; (1)

VLDðqÞ ¼ ESðqÞ þ ECðqÞ; (2)

VSHðq; TÞ ¼ E0shellðqÞFðTÞ; (3)

FðTÞ ¼ exp
�
� aT2

Ed

�
: (4)

Here, VLD is the potential energy calculated with the finite-range
liquid drop model, given as a sum of the surface energy ES (Krappe
et al., 1979) and the Coulomb energy EC. VSH is the shell correction
energy evaluated by Strutinski method from the single-particle
levels of the two-center shell model. The shell correction have a
temperature dependence expressed by a factor F(T), in which Ed is
the shell damping energy chosen to be 20 MeV (Ignatyuk et al.,
1975) and a is the level density parameter. At the zero tempera-
ture (T ¼ 0), the shell correction energy reduces to that of the two-
center shell model values E0shell. The second term on the right hand
side of Eq. (1) is the rotational energy for an angular momentum [

(Aritomo and Ohta, 2004), with a moment of inertia at q, I(q).
The multidimensional Langevin equations (Aritomo and Ohta,

2004) are given as

dqi
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�
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�
jk
pk þ gijRjðtÞ;

where i ¼ {z, d, a} and pi ¼ mijdqj/dt is a momentum conjugate to
coordinate qi. The summation is performed over repeated indices.
In the Langevin equation, mij and gij are the shape-dependent
collective inertia and the friction tensors, respectively. The wall-
and-window one-body dissipation (Blocki et al., 1978; Nix and
Sierk, 1984; Feldmeier, 1987)is adopted for the friction tensor
which can describe the pre-scission neutronmultiplicities and total
kinetic energy of fragments simultaneously (Wada et al., 1993). A
hydrodynamical inertia tensor is adopted with the Werner-
Wheeler approximation for the velocity field (Davies et al., 1976).
The normalized random force Ri(t) is assumed to be that of white

Fig. 1. Sample trajectory of VLD þ E0shell for n þ 235U projected onto the zea plane at
d ¼ 0.2 (a) and the zed plane at a ¼ 0.0 (b). The trajectory starts at z ¼ 0.65, d ¼ 0.2, and
a ¼ 0.0, at E* ¼ 20 MeV, corresponding to the second minimum of the potential energy
surface, to reduce the calculation time.
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