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a b s t r a c t

A modified a � k power iteration method is presented for the prediction of time-eigenvalue(a) of the
neutron transport equation. By developing a direct relationship between K-eigenvalue and a-eigenvalue,
a new formula is introduced to estimate the value of a. Compared with the conventional method, it is not
required to provide the initial values of a for the modified method. Since it is always difficult to guess the
suitable initial values, the modified method is more convenient for solving time-eigenvalue problems.
Computational experiences show that the accuracy of the modified method is the same as the con-
ventional method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Although several eigenvalue problems can be defined for the
quasi-stationary neutron transport equation, the two most com-
mon formulations are effective fission multiplication factor (keff)
and a- or time-eigenvalues, which are basic to the subject of nu-
clear reactor physics. The physical meaning and the properties of
these eigenvalues were discussed in a very rich literature, e.g. (Bell
and Glasstone, 1970; Larsen and Zweifel, 1974; Lewis and Miller,
1993).

In the K-eigenvalue problem, the fission source is artificially
multiplied by a factor 1/k so as to obtain a balance between pro-
duction and loss of neutrons and thus a steady state. The eigen-
values ki are all real and positive. The largest value k1 is called the
effective fission multiplication factor keff. The fluxes corresponding
to the k1 are positive everywhere, whereas the fluxes may be
negative for other modes (Lewis and Miller, 1993, p. 46; Modak and
Gupta, 2007). The power iteration (PI) method (Duderstadt and
Hamilton, 1976) is commonly used to obtain the keff.

The a-eigenvalue problem is defined in a different way. Let f ¼
fð r!; E; U

!
; tÞ denote neutron angular flux at point r! in the energy E

and the direction U
!

at time t. In the a-eigenvalue problem, the flux
is assumed to have an exponential time-dependence in the form

f
�
r!; E; U

!
; t
� ¼ fa

�
r!; E; U

!�
$eat (1)

Then, by insertion in time-dependent neutron transport equa-
tion, the eigenvalue equation can be obtained. The eigenvalue a

appears in the form of a 1/v absorber. Like the K-eigenvalue prob-
lem, there are many possible eigenvalues ai and corresponding
eigenfunctions. Unfortunately, only a few general properties of the
a-eigenvalue are known so far. The ai need not be real and positive.
They may be composed of a continuous spectrum and a discrete
spectrum. In particular, it has been shown that under mild as-
sumptions a dominant discrete eigenvalue a exists, which is real,
larger than the real parts of all the other a, and whose associated
eigenfunction is non-negative (Larsen and Zweifel, 1974; Zoia et al.,
2014). Usually, the dominant discrete eigenvalue is called the
fundamental eigenvalue.

The standard power iteration method cannot be used to
compute the a-eigenvalue because the magnitude of fundamental
a-eigenvalue is not the largest (Modak and Gupta, 2007). To find
the fundamental a-eigenvalue, a a � k power iteration method has
been developed in some recent papers, and adopted by many
neutron transport codes (Briesmeiser, 2000; Ye et al., 2007; Zoia
et al., 2014; Zoia et al., 2015). Although the power iteration
method dominates the field of eigenvalue computation, other
methods have emerged, for instance, implicitly restarted Arnoldi
method (IRAM) (Lathouwers, 2003; K�oph�azi and Lathouwers,
2012) and nonlinear solution method (Fichtl and Warsa, 2013).
K�oph�azi and Lathouwers (2012) refers to the fact that the IRAM is
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applicable only to subcritical systems. Fichtl and Warsa recast the
a-eigenvalue problem as a nonlinear problem, and solve this
nonlinear problem by nonlinear solvers.

In order to find the a-eigenvalue by the a � k power iteration, it
is required to provide a initial value of a (see Section 2.2 for details).
It is always difficult to guess the suitable initial value. Therefore, an
attempt has been made here to design a new a � k power iteration
method for obtaining the a-eigenvalue of the neutron transport
equation. The initial value is no longer needed for the newmethod.

The remainder of this paper is organized in the following
manner. Section 2 briefly describes the K- and a-eigenvalue equa-
tions, and the conventional methods. Section 3 details the new
computation scheme developed by this work. Section 4 presents
some numerical results for typical problems to demonstrate the
validity and efficiency of the new method. Finally, Section 5 gives
conclusions.

Since only “prompt” a-eigenvalue problem is considered in this
paper, the delayed neutrons are neglected. So, in the following
equations, the notation np is adopted to denote the average number
of prompt neutrons per fission.

2. Eigenvalue problems and conventional methods

2.1. Eigenvalue problems

The a-eigenvalue equation can be derived from the time-
dependent neutron transport equation given below:

here the well known notations are used. If Eq. (1) is substituted in
Eq. (2), the time derivative term is replaced by a/vf and then the
common exponential term eat is removed, leading to the time-
independent a-eigenvalue equation:

The K-eigenvalue problem is formulated by assuming that np, the
average number of neutrons per fission, can be adjusted to obtain a
time-independent solution to Eq. (2). Hence the K-eigenvalue
equation may be written as follows:

Finally, the common boundary conditions for the two problems
are formed as

fx
�
r!; E; U

!� ¼ 0; r!2vVB; U
!
$ n!<0 (5)

fx
�
r!; E; U

!� ¼ fx

�
r!; E; U

!0�
; r!2vVR; U

!
$ n!<0 (6)

for the bare and reflected boundaries, respectively. Here U
!0

is
the reflected direction from U

!
, and the subscript x is equal to a or k.

2.2. Conventional methods

Since the K-eigenvalues are real positive and the fundamental K-
eigenvalue is the greatest, it is invariably solved by the method of
power iteration. This method is well known and can be found in a
very rich literature (Bell and Glasstone, 1970; Lewis and Miller,
1993; Du and Zhang, 1988), so further details are not presented.

Although the standard power iteration method cannot be used
to find the a-eigenvalue (Modak and Gupta, 2007), a a � k power
iteration method has been developed. By introducing a fictitious
parameter k dividing the fission term, a-eigenvalue Eq. (3) can be
written as follows:

U
!
$Vfaþ

�
Stþa

v

�
fa¼

Z ∞

0
dE0

Z

4p

dU0Ss

�
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!0
$U
!�

�fa

�
r!;E0;U

!0�þ1
k
cðEÞ
4p

Z ∞

0
dE0npSf ð r!;E0Þ

�
Z

4p

dU0fa

�
r!;E0;U

!0�

(7)

which becomes a standard k-eigenvalue equation, the parameter a
being though unknown. The basic strategy is to seek then the value
a for which k ¼ 1 (Zoia et al., 2014).

So, the a-eigenvalue can be found by the iterative scheme as

follows (Du and Zhang, 1988):

1. a1 and a2 which are two initial values of a, are guessed. Then k1
and k2 are found by the power iteration from Eq. (7),

respectively.
2. Based on (kn�2,an�2) and (kn�1,an�1), the new estimate of a, an, is

obtained by a linear extrapolation (8). Subsequently, kn can be
found from Eq. (7).

1
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