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ABSTRACT

The Variational Nodal Method (VNM) expands the nodal volumetric flux and surface partial current into
the sums of orthogonal basis functions without using the transverse integration technique. The exclusion
of the transverse integration provides a number of advantages for employing the VNM in Pressurized
Water Reactor (PWR) core simulation. The orthogonality of those basis functions guarantees the con-
servation of neutron balance regardless of the expansion orders, providing an opportunity to accelerate
the computationally expensive full-order iteration by using cheap low-order sweeping with high-order
moments fixed. This was named as the Partitioned-Matrix (PM) technique in the legacy VNM code
VARIANT, and was applied to the within-group (WG) iteration. It is very effective for neutron-transport
calculation, but less effective for neutron-diffusion mainly due to the reduced number of high-order
partial current moments. In this paper, we extend the PM technique to the Fission-Source (FS) itera-
tion to accelerate the flux convergence by using low-order flux moments also. From the macroscopic
acceleration point of view, it converges the fission- and scattering-source distributions by using
computationally cheap low-order iteration faster than the original full-order sweeping. Based on our
new VNM code VIOLET, considering the fact that the discontinuity factor used for preserving neutron
leakage rates during spatial homogenization slows down the nodal iteration convergence, numerical
tests were carried out for two typical PWR problems respectively without and with discontinuity factors.
By analyzing both the computational effort in terms of FLOP (FLoating-point OPeration) and computing
time, the following conclusions have been demonstrated. The legacy PM technique for WG iteration can
provide an acceleration ratio of about 2 for the PWR core neutron-diffusion calculation with or without
using discontinuity factors, while the one for FS iteration itself can accelerate by a factor of about 3 which
is higher. By accelerating both the WG and FS iteration simultaneously, the acceleration ratio is about 4
for both the two PWR problems. In addition, by extending the PM technique from the WG iteration to the
FS iteration, the neutron-diffusion calculation of the VNM can be accelerated very effectively with almost
no extra storage or implementation cost to the existing computer code.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

parity form of the Boltzmann transport equation. In this variational
principle, the odd-parity Lagrange multipliers along the nodal in-

The Variational Nodal Method (VNM) (Lewis and Miller, 1984;
Carrico et al., 1992) was first developed by Northwestern Univer-
sity and Argonne National Laboratory (ANL) to solve the multi-
group steady-state neutron-diffusion and -transport equations for
reactor core calculations. It uses a variational principle for the even-
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terfaces guarantee neutron conservation for each node. The clas-
sical Ritz procedure is employed by using orthogonal polynomials
in space and spherical harmonics in angle. Nodal response matrices
are then formed for the volumetric flux moments and surface
partial current moments. The VARIANT code (Palmiotti et al., 1995),
developed at ANL in mid 90s was the first production code based on
VNM. It has been employed for fast reactor routinely designing both
in ANL such as the REBUS code (Toppel, March 1983) and in Europe
such as the ERANOS code (Doriath et al., 1994). In 2007, a new
version of the VARIANT code named NODAL was developed in ANL
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as one of the solvers in the UNiC package (Palmiotti et al., 2007; Li
etal,, 2015).In 2011, it has also been implemented into the INSTANT
code in Idaho National Laboratory (INL) (Wang et al., 2011).

The exclusion of the transverse integration in the VNM provides
several advantages (Lawrence, 1986; Wagner, 1989). Firstly, the
VNM expands the volume flux by using basis functions which
usually are orthogonal polynomials. Once obtained those flux
moments, continuous flux profile within each node can be ob-
tained, leaving no need for pin power reconstruction which usually
introduces more approximations. Secondly, for adjoint flux calcu-
lation usually employed in transient simulation, the VNM can
guarantee that the corresponding mathematical adjoint flux is
exactly the same with the physical one. Thirdly, it is possible to
extend the homogeneous VNM to heterogeneous VNM which can
treat heterogeneous cross section distribution within each node
(Smith et al., 2003; Li et al.,, 2014; Wang et al.). Fourthly, the VNM
employs the Pn method for angular variable within which neutron-
diffusion equation is equivalent to the Py approximation, enabling
this method can to be consistently extended to neutron-transport
calculation. Thus, recently a new VNM code named VIOLET has
been developed at Xi'an Jiaotong University (XJTU) for thermal
reactor such as Pressurized Water Reactor (PWR) neutron-diffusion
simulation.

The numerical process of the VNM contains three levels of
iteration. The outermost is the Fission-Source (FS) iteration (also
termed as the outer iteration in literatures) based upon the Power
Method (Lewis and Miller, 1984). At each FS iteration, just in case if
up-scattering shows up, the multi-group (MG) flux system is solved
by using the legacy Gauss-Seidel (GS) algorithm. Only one sweep
over the energy groups is required if there is no up-scattering. For
each group, the within-group (WG) response matrix system is
solved by using the Red-Black Gauss-Seidel (RBGS) algorithm
(Palmiotti et al., 1995). It is the so-called WG iteration (typically
termed as the inner iteration in literatures).

Traditionally, the VARIANT code employs the Partitioned-Matrix
(PM) technique to accelerate the WG iteration. Before each full-
order partial current moments iteration, a number of low-order
partial current moments iterations are carried out with the high-
order ones fixed. Usually, only one full-order sweep is carried out
for each energy group within each MG iteration. The PM technique
performs very well in transport cases due to the large number of
high-order moments. However, the effect is less effective in diffu-
sion because there are fewer high-order moments to eliminate.
Though other techniques or algorithms such as the Krylov (Saad,
2003; Saad and Schultz, 1986) ones including CG (Conjugate
Gradient) (Wang et al., 2011) and GMRES (Generalized Minimal
Residual Method) (Wang et al., 2011; Lewis et al., 2013; Li et al,,
2012) have also been proposed and tested, they usually require
more memory due to the storage of orthogonal vectors. In addition,
these algorithms usually require preconditioners to be compatible
with the PM accelerated WG RBGS iteration, making the code
system much more complicated.

The rest of this paper is organized as following. Section 2 de-
scribes the theory of the VNM including its iteration process, the
PM technique and its implementations to the both the WG and FS
iterations of the VNM, Section 3 assesses the PM technique
numerically by using two typical PWR problems respectively with
and without discontinuity factors. Section 4 summarizes the con-
clusions and discussions.

2. Theoretical formulation
After introducing the VNM response matrices and the iteration

process, the PM techniques for both the WG and FS iterations are
described in detail. The computing efforts of applying these

response matrices are evaluated and summarized based on these
formulas.

2.1. The Variational Nodal Method

After the multi-group approximation for the energy variable
and the P; approximation for the angular variable, isotropic scat-
tering with transport correction and isotropic fission, the neutron-
transport equation becomes the Multi-Group neutron-diffusion
equation together with its albedo boundary condition:
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where common symbols are used as in literature (Lewis and Miller,
1984), Jo and n, are column vectors. The variational principle (Lewis
and Miller, 1984) turns out to be:
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For each energy group and each node, the volumetric flux and
source are expanded by using basis functions:
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And the surface net outgoing current is expanded as
T . T
.’g(r)n7 = Z]y,kghy,k(r) = h'y."y,g rer“/ (8)
k=1

where fi(r) and h, «(r) are orthogonal polynomial basis functions
respectively on nodal volume v and surface I'y, I and K are the
number of expansion terms, ¢g, S, jy.¢ fand hy are column vectors
containing the corresponding moments and functions.

Nodal response matrices can be formed (Lewis and Miller, 1984;
Carrico et al., 1992; Palmiotti et al., 1995; Wang et al., 2011) by
firstly substituting the expansions in Eqs. (6)—(8) into the func-
tional in Eq. (5), the boundary conditions in Eq. (3) and the source in
Eq. (2) and then requiring the functional to be stable in terms of ¢
and j, respectively:
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