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a b s t r a c t

We present a phase-field model for fracture in Kirchoff–Love thin shells using the local maximum-
entropy (LME) meshfree method. Since the crack is a natural outcome of the analysis it does not require
an explicit representation and tracking, which is advantage over techniques as the extended finite ele-
ment method that requires tracking of the crack paths. The geometric description of the shell is based
on statistical learning techniques that allow dealing with general point set surfaces avoiding a global
parametrization, which can be applied to tackle surfaces of complex geometry and topology. We show
the flexibility and robustness of the present methodology for two examples: plate in tension and a set
of open connected pipes.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of fracture in thin structures is of major
importance in engineering applications such as aircraft fuselages,
pressure vessels, automobile components, and castings. Since
analytical solutions provide limited information, there has been a
keen interest in numerically simulating fracture in thin shells in
recent years. However, despite the advances made in modeling
fracture for solid bodies [1–5], fracture in thin bodies remains a
challenge due to the complex interplay between cracks and the
shell kinematics and geometry.

Non-propagating cracks in plates and shells have been modeled
with partition-of-unity methods [6–8]. These approaches have
been restricted to simple geometries. The majority of formulations
are based on Mindlin–Reissner theory [9]. There are comparatively
fewer methods considering fracture in thin shells [10]. In [11], a
shell element based on discrete Kirchhoff theory was proposed
assuming through-the-thickness cracks. Later, a shell model with
the phantom node method based on edge rotations was proposed
[12] for both thin and thick shells, where the crack tip can be lo-
cated inside an element. A method based on subdivision shell ele-
ments and modeling the fracture along the element edges with a
cohesive law was proposed in [13]. In [14–16], a meshfree thin
shell model for static and dynamic fracture was presented.

Most of above methods are based on discrete crack models that
require explicitly (or sometimes implicitly [17]) tracking the crack
path. Furthermore, many of the approaches are applied to simple
geometries such as plates, or spherical and cylindrical geometries
[18,19,12,20]. Towards a general, flexible and robust methodology
to deal with fracture in Kirchhoff–Love shells, we propose here
treating fracture with a phase-field model and discretizing the cou-
pled thin-shell/phase-field equations with a recently proposed
meshfree method for partial differential equations on manifolds
of complex geometry and topology [21,22].

Phase-field methods are widely used in science and engineering
to model a variety of physics [23–26]. The extension of this method
for fracture in solids was introduced in [27,28], where the brittle
crack propagation problem was regularized and recast as a minimi-
zation problem. In the phase-field approach, discontinuities are not
introduced into the displacement field or geometrically described.
Instead, a continuous field governed by a partial differential equa-
tion models cracks and their evolution. Crack propagation does not
require evaluating stress intensity factors. This method naturally
deals with crack nucleation, branching and coalesce result in a sim-
ple implementation. Its main drawback is its high computational
cost. The crack zone is controlled by a regularization parameter.
As this regularization parameter converges to zero, the phase field
model converges to a discrete crack model.

Dealing computationally with the Kirchhoff–Love theory is
challenging because second derivatives of the displacement field
appear in the weak form, and therefore a Galerkin method requires
C1-continuous basis functions. This can be overcome by discretiz-
ing the director field or introducing rotational degrees of freedom
[29–31], or by considering more elaborate variational formulations
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such as in discontinuous Galerkin methods [32,33]. Instead, here
we focus on methods relying on smooth basis functions. Finite ele-
ment methods with high order continuity have been proposed,
either based on subdivision surfaces [13,34] or on isogeometric
analysis [35–37]. The higher order continuity of the meshfree basis
functions has also been exploited for this purpose [14,15], but
since meshfree basis functions are defined in physical space, these
methods were applied to simple geometries with a single paramet-
ric patch. Recently, nonlinear manifold learning techniques have
been exploited to parametrize 2D sub-domains of a point-set sur-
face, which are then used as parametric patches and glued together
with a partition of unity [38,21]. Here, we combine this methodol-
ogy with local maximum-entropy (LME) meshfree approximants
[39,40,5] because of their smoothness, robustness, and relative
ease of quadrature compared with other meshfree approximants.

The paper is organized as follows. Section 2 describes the repre-
sentation of general surfaces represented by a set of scattered
points [21]. In Section 3, we review the Kirchhoff–Love theory of
thin shells. In Section 4, we introduce a phase-field model for frac-
ture in thin shells. The Galerkin discretization is also presented in
this section. In Section 5 we demonstrate the capabilities of the
method through two numerical examples. Some concluding re-
marks are given in Section 6.

2. Numerical representation of the surfaces

To illustrate the method considered here for numerically repre-
senting surfaces defined by a set of scattered points, we refer to
Fig. 1. As noted in [41], a fundamental difficulty in defining basis
functions and performing calculations on a surface, as compared
to open sub-sets in Euclidean space, is the absence in general of
a single parametric domain. A simple example is the sphere, which
does not admit a single singularity-free parametrization. Mesh-
based methods, consisting of a collection of local parametrizations
from the parent element to the physical elements, do not have any
difficulty in this respect at the expense of reduced smoothness
across the element boundaries or the need for special techniques
to recover inter-element smoothness. In meshfree methods, such
a natural parametric domain is not available, and the description
of surfaces with a topology different to that of an open set in R2,
such as a sphere (A) or a set of connected pipes (B), is a challenge.
Even for surfaces homeomorphic to open two-dimensional sets,
such as that depicted in (C), the geometric complexity can make
it very difficult to produce well-behaved global parametrizations.
For these reasons, the method we follow here proceeds in four
steps: (1) We first partition the set of scattered points into subsets.
(2) For each subset, the geometric structure of the surface is de-
tected by dimensionality reduction methods and its points are
embedded in 2D. (3) The 2D embedding then serves as a local para-
metric patch, and a local parametrization of the surface using

smooth meshfree LME approximants is defined. (4) Finally, the dif-
ferent patches are glued together by means of a partition of unity.

Consider a smooth surface M embedded in R3 and represented
by a set of (control) points P ¼ fP1;P2; . . . ;PNg � bopenR3. The goal
is to numerically represent M from P and make computations on it.
We consider another set Q ¼ fQ 1;Q 2; . . . ;Q Mg � R3 with fewer
point, typically a subset of P but not necessarily. We call the points
of this set geometric markers. For simplicity, we will denote the
points in P and its associated objects with a lower case subindex,
e.g. Pa, for a ¼ 1;2; . . . ;N, and the geometric markers in Q and its
associated objects with an upper case subindex, e.g. Q A, for
A ¼ 1;2; . . . ;M.

We partition these geometric markers into L groups. These L
groups of geometric markers can be represented with index sets
Ij;j ¼ 1; . . . ; L with [L

j¼1Ij ¼ f1;2; . . . ;Mg and Ij \Ii ¼ ; such
that j – i. As it will become clear below, there is a one-to-one cor-
respondence between these groups of geometric markers and the
local parameterizations of the surface, which here we refer as
patches.

We consider a Shepard partition of unity associated with the
geometric markers. Given a set of non-negative reals bAf gA¼1;2;...;M ,
we define the Shepard partition of unity with Gaussian weight
associated to the set Q as

wAðxÞ ¼
expð�bA j x� Q Aj

2ÞPM
B¼1 expð�bB j x� Q Bj

2Þ
: ð1Þ

To obtain a coarser partition of unity representative of a partition,
we aggregate the partition of unity functions as

wjðxÞ ¼
X
A2Ij

wAðxÞ: ð2Þ

These functions form a partition of unity in RD, and consequently
also in M. We consider the index sets of all control points influenc-
ing each patch, Jj, with [L

j¼1Jj ¼ f1;2; . . . ;Ng, but now
Jj \Ji – ; due to the overlap between patch partition of unity
functions. Roughly speaking, these sets are fa j Pa 2 sup wjg,
slightly enlarged so that the patch parameterization is smooth on
the boundary of the support of wj.

For each patch, through a nonlinear dimensionality reduction
technique applied to the set of control points Pj ¼ Paf ga2Jj

� R3,
we obtain a two-dimensional embedding of these points, repre-
sented by the set Nj ¼ naf ga2Jj

� R2. The two-dimensional region
defined by these points is a convenient parametric space for the
corresponding patch. It is important to note that the embedded
points are in general unstructured, and that, although here d ¼ 2,
the methodology is applicable to higher dimensional embedded
manifolds unlike mesh based techniques.

The patch parametrizations often need to be smooth, here be-
cause of the requirements of the Kirchhoff–Love theory. We con-
sider here LME basis functions. See [39,40,38] for the LME

Fig. 1. Three point-set surfaces that require partitioning for different reasons: (A and B) for their non-trivial topology, and (C) for its complex geometry.
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