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a b s t r a c t

A well-known method for modelling crack propagation in structural finite element analysis is the use of
interface elements employing the theory of cohesive surfaces. However, the use of cohesive surfaces in
explicit dynamics is problematic since they have zero mass and must initially be very stiff in order to
avoid the introduction of artificial compliance. These properties lead to an often drastic reduction in
the critical time step of the analysis. In this paper we use the bipenalty method to derive a mass matrix
for a 2D cohesive surface interface element that does not add net physical mass to the overall system.
This allows for cohesive surfaces with very high initial stiffness that have no effect on the critical time
step of the analysis. Not only does this lead to a more robust and stable system, it also greatly simplifies
the choice of parameters since there is no need to adjust the time step, and no need to limit the initial
penalty stiffness according to time step stability considerations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In finite element (FE) analysis the three most common tech-
niques for the modelling of fracture and crack propagation in a dy-
namic setting are the element deletion method, the extended
finite element method (XFEM), and inter-element crack methods
[1]. Each of these approaches build upon standard FE formulations
to include the effects of damage and crack propagation in some
way. Element deletion is the simplest of the methods and the most
widely used in commercial codes (e.g., ANSYS [2] and LS-DYNA
[3]). It requires only an alteration of the constitutive relation of a fail-
ing element so that the stress in the element is reduced to zero for
large strain, effectively removing certain elements as an analysis is
carried out. However, its reliability with regards to the prediction
of crack paths has been called into question [1]. Furthermore, crack
paths and the details of crack growth are often highly mesh-depen-
dent [4]. XFEM was first introduced by Belytschko and co-workers in
1999 to tackle crack propagation problems in elastostatics [5,6]. It
uses shape function enrichment in order to introduce discontinu-
ities within finite elements, which overcomes the high mesh depen-
dence of previously existing techniques. This makes it an attractive
option for accurately and efficiently predicting crack paths which
are not known a priori [7], but has yet to achieve widespread
adoption in commercial software.

Inter-element crack methods are a well-established group of
techniques that explicitly model cracks on the boundaries of indi-
vidual finite elements. This can be achieved either by adaptive
remeshing or by the addition of interface elements at element

boundaries possessing a specially designed traction–displacement
relationship, an approach also referred to as the cohesive zone
model. The theory of cohesive surfaces (also known as cohesive
zones) was first introduced in the 1960s [8,9] but was not applied
to dynamic crack propagation until the 1990s, with publications
from Xu and Needleman [10], Camacho and Ortiz [11] and Repetto
et al. [12] forming the basis for the present work. Each of these for-
mulations introduces interface elements, or ‘cohesive surfaces’,
into the FE continuum. A nonlinear traction–displacement rela-
tionship is then chosen that approximately represents the fracture
characteristics of the material. Cracks are thus free to coalesce and
propagate as a natural outcome of the simulation.

Using cohesive zone modelling for explicit dynamic analysis,
however, leads to some unique challenges. Explicit solvers are
much more efficient that implicit schemes per time step, but be-
cause they are conditionally stable the step size must be kept be-
low the so-called critical time step, Dtcrit, in order to ensure
stability. For the central difference method the critical time step
is given by Dtcrit ¼ 2=xmax, where xmax is the maximum eigenfre-
quency of the system. The critical time step therefore depends on
mesh size, as well as material properties. Elements with high stiff-
ness or low mass decrease Dtcrit, leading to extra computational ex-
pense. Interface elements in a cohesive surface formulation must
initially have very high stiffness so that they do not have any ad-
verse effect on the simulation before damage has occurred; ele-
ments that are not stiff enough lead to ‘artificial compliance’ in
the continuum [13,14]. In addition, they have no mass, since they
have an initial volume of zero. These properties can lead to a dras-
tic reduction in the critical time step that is required for stability.

Camacho and Ortiz [11] avoid this problem by introducing
cohesive surfaces only at the onset of damage, but this requires
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alterations to the FE discretisation (and thus to the computer
memory requirements) as cracks propagate. Ortiz and Pandolfi
[15] also select a cohesive law without an initial elastic region be-
cause this would place ‘‘stringent restrictions’’ on the stable time
step. Espinosa and Zavattieri [13] use a large initial stiffness, but
it is acknowledged by the same authors that a large penalty will
have a significant impact on the critical time step, and as a result,
the time step calculation includes an additional limitation in that it
must take into account the cohesive surfaces as well as continuum
elements. Because of this, a subcycling time integration routine is
built into the formulation, adding undesirable complexity to the
solution algorithm. This is deemed necessary because, as noted
by Song et al., the original cohesive surface formulation developed
by Xu and Needleman ‘‘induces artificial compliance due to the
elasticity of the intrinsic cohesive law’’ [14].

Interface elements by their nature introduce large eigenvalues
into the FE system; since the critical time step is inversely propor-
tional to the maximum eigenvalue this has a detrimental effect on
the critical time step. The standard analysis states that this is due
to the high initial stiffness of the cohesive surface elements. How-
ever, eigenvalues may be decreased not only by decreasing the
stiffness of an element, but also by adding mass. Recently, an
extension of the traditional penalty method—referred to here as
the bipenalty method—has been proposed that includes a mass
penalty matrix alongside standard stiffness penalties in the formu-
lation [16–20]. In the present work, we use the bipenalty method
to provide a mass matrix for a simple cohesive surface formulation.
No net physical mass is added to the system; the sum of all ele-
ments in the interface mass matrix is zero. The inclusion of the
mass matrix, however, does allow for control over the eigenvalues
introduced by the interface elements, and therefore control over
the effect that the elements have on the critical time step. By pro-
viding a mass matrix formulation alongside the traditional stiffness
penalties, the introduced eigenvalues can be controlled even when
very a very large initial stiffness is used, so that interface elements
and, by extension, cohesive surfaces can be used in explicit dynam-
ics without having to reduce the critical time step.

2. Element formulation

We assume that initially we have a structural system, discre-
tised in space by the FE method, of the form

M uþKu ¼ f ð1Þ

where M and K are the assembled mass and stiffness matrix for the
continuum elements, u is the displacement vector, f the external
force vector, and dot notation is used to indicate time derivatives;
structural damping is neglected. A bipenalty formulation results
in a system of equations of the form

ðMþMPÞuþðKþ KPÞu ¼ f ð2Þ

where MP and KP are mass and stiffness penalty matrices, which for
a system containing cohesive surfaces are assembled from the
interface element mass and stiffness matrices, which are to be
derived in this section.

The critical time step for the system is given by

Dtcrit ¼
2

xmax
ð3Þ

where xmax is the maximum eigenfrequency of the system. Eigen-
values are related to eigenfrequencies by ki ¼ x2

i and the maximum
eigenvalue is kmax. The eigenvalues can be determined by solving
the generalised eigenvalue problem for the system. In the case
where KP ¼ RMP (with R a scalar) it has been shown that the max-
imum eigenvalue kmax of the penalised system (2) will not exceed

the maximum eigenvalue kUP
max of the unpenalised system (1) for

the case where R 6 kUP
max [20,21]. Thus, the critical time step Dtcrit

is not decreased by the addition of the interface elements for
R 6 kUP

max.
We will now present a standard interface element stiffness

matrix formulation, followed by the corresponding mass matrix
formulation, and show that under reasonable assumptions,
KP ¼ RMP (and therefore that the above analysis holds for this
bipenalty cohesive surface formulation).

2.1. Element stiffness matrix

The interface element formulation is based on the work of
Schellekens [22,23], who derives a 4-noded 2D line interface
element with an initial volume of zero (see Fig. 1). The stress is
defined by normal and tangential tractions across the interface
and the stiffness of the element is controlled by user-defined
parameters that describe the constitutive behaviour.

We now consider this 4-noded line interface. Each node has two
displacement degrees of freedom (DOF), giving an element nodal
displacement vector

d ¼ d1
n;d

2
n;d

3
n;d

4
n;d

1
t ;d

2
t ;d

3
t ;d

4
t

h iT
ð4Þ

where n and t denote the directions normal and tangential to the
interface, respectively, and superscripts indicate the node numbers
as shown in Fig. 1. The relationship between nodal displacements d
and relative displacements d ¼ ½dn; dt�T is given by

d ¼ Bd ð5Þ

where

B ¼
�n n 0 0
0 0 �n n

� �

and n are the interpolation polynomials n ¼ ½N1;N2�. For arbitrarily
orientated elements, the matrix B should be transformed to the
local tangential co-ordinate system of the node set.

We now introduce a matrix Ds describing the constitutive trac-
tion–displacement relation, so that

t ¼ Dsd ð7Þ

where t ¼ ½tn; tt�T is the traction vector for the element (units N/m2)
and Ds is a constitutive matrix of the form

Ds ¼
kn 0
0 kt

� �

The values kn and kt (units N/m3) represent the ‘stiffness’ of the
interface in the normal and tangential directions, although a more
accurate description is stiffness per unit area. It is these values that
function as the stiffness penalty parameters for the interface. In the
present work we assume that both parameters are equal so that
kn ¼ kt ¼ as and Ds ¼ asI. We postpone until Section 2.3 a discus-
sion of how these constitutive relations may change over time
(due to damage).

The stiffness matrix Ke can now be obtained by minimisation of
the total potential energy. The internal work done in the element is

t

1
2

3
4

t1, 3 2, 4

Fig. 1. Line interface element in an initial (left) and deformed (right) configuration.
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