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a b s t r a c t

A new meshless sub-region radial point interpolation method (MS-RPIM) is proposed for linear elastic
fracture mechanics. The Williams expansions of stress field for mode I/II crack is used as the trial func-
tions in crack tip region, the meshless radial point interpolation is used for the rest of domain, and a
mixed variational principle is used for discretisation. In contrast to existing meshless formulations, the
present MS-RPIM requires only very few nodes around the crack tip to obtain smooth stress and accurate
results and the SIFs can be directly obtained as part of the solution and no additional effort via post-
processing.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The accurate analysis of crack tip fields is of vital importance for
the safety assessment and life prediction of cracked engineering
structures and materials. Over the past three decades, a wide range
of numerical methods have been proposed for fracture modelling.
The finite element method (FEM) using quarter-point for standard
elements, singular crack tip elements, enriched elements, and hy-
brid elements [1–5] can be applied for fracture modelling with
quite good accuracy. For static cracks, the FEM remains a dominant
numerical tool. However, the method finds difficulties in modelling
crack propagation due to the element topology that needs to be up-
dated during crack propagation. More recently, the development of
novel numerical methods has attracted much interest for research-
ers in computational mechanics particularly in the area of mesh-
less methods, which refers to a group of numerical methods
requiring no preexisting mesh for the construction of the field
approximation. They are particularly suitable for fracture model-
ling since there is no entanglement problem with large deforma-
tions of the mesh requiring updating or remeshing to
accommodate the changing geometry of a crack. Some of the
prominent methods for crack analysis are the generalised finite
element method (GFEM), the extended finite element method
(XFEM), smoothed FEM and non-uniform B-spline based FEM [6–
8,44]. These methods together with meshless methods fall gener-
ally into the family of partition of unity methods.

Recently, much effort has been directed towards the application
of meshless methods to crack problems to overcome the
difficulties in traditional numerical methods such as meshless
methods for dynamic problem, 2D fracture modelling [9–18], 3D
fracture modelling [19,38–41], fluid structure integration [42],
cohesive cracks [29–33], concrete fragmentations [34–37] and
shell analysis [43]. Despite clear general progress with these meth-
ods, there are still some technical issues in their application to frac-
ture problems, for instance, it is often awkward and an expensive
task to refine the nodal arrangement near the crack tip in order
to increase the solution accuracy, since the stress results tend to
be oscillatory near the crack tip. The incorporation of singular func-
tions associated with linear elastic fracture in meshless methods
reduces stress oscillations and increases accuracy of stress inten-
sity factor (SIF) significantly [12,16]. However, introducing such
an enriched basis in meshless approximations can lead to ill-condi-
tioning of the global stiffness matrix, and special treatments
[12,17] have to be used to alleviate this problem. Thirdly, many
meshless methods employ the J-integral or contour integral
scheme for the calculation of SIF, which is performed as a post-pro-
cessing step applied to the stress results, such as in the formula-
tions using the FEM described in [15–19] and partition of unity
enriched boundary element method (PU-BEM) [20,21]. This is un-
like the case with the isoparametric FEM or sub-region mixed var-
iational principle based FEM where the SIF can be directly obtained
as part of the solution [3–5].

To address the above issues, a new meshless method is pro-
posed in this paper which can be classified as a mixed sub-region
radial point interpolation method (MS-RPIM) for analyzing crack
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tip fields. In this method, Williams expansion of the stress field of
mode I/II crack [22] is used as the trial functions in the region near
the crack tip, the meshless RPIM [23,24] is used for the region far
from the crack tip, and a mixed variational principle is used to dis-
cretise the governing equations [3]. The present MS-RPIM pre-
serves the advantages of meshless methods where the
entanglement of finite element topology is removed, and has fur-
ther positive features such as a simple formulation for numerical
implementation. In contrast to existing meshless formulations for
fracture modelling, it has the following advantages. Firstly, only a
very few nodes around the crack tip are required to obtain smooth
stress results and accurate SIFs. Secondly, solution accuracy and
stability are much better than meshless methods using implicit
enrichment and it is free from the ill-conditioning problem which
affects the global stiffness matrix using explicit enrichment. Final-
ly, the SIFs can be directly obtained as part of the solution; there is
no additional effort required to calculate the SIF results via post-
processing. The rest of the paper is organised as follows. Section
2 covers the field interpolation used in the MS-RPIM, which is then
described in detail in Section 3 including a description of the mixed
variational formulation used for discretisation. Finally, Section 4
contains verification examples to show the performance of the
method.

2. Point interpolation based on radial basis function

For the convenience of the following discussion, in this section
we will briefly describe the field interpolation using the RPIM, used
for the stress analysis. The RPIM was originally proposed in [23]
and has been recently used for fracture modelling in [16,24]. We
confine the present study to 2D linear elastic fracture mechanics,
with the fundamental field variables being displacements. Con-
sider a problem domain X of arbitrary shape discretised by a set
of scattered nodes {xi} as shown in Fig. 1. For a given point x in
X, there are n distributed nodes in the influence domain Xx of
point x. Considering one of the two freedoms at a node, the nodal
function value is ui at node xi. The RPIM is used to construct the
approximation function u(x) of the point x using radial basis func-
tions Bi(x) and polynomial basis functions Pi(x) having m terms

uðxÞ ¼
Xn

i¼1

BiðxÞai þ
Xm

j¼1

PjðxÞbj ¼ BTðxÞaþ PTðxÞb ð1Þ

where the vectors are defined as

aT ¼ ½a1; a2; . . . ; an�
bT ¼ ½b1; b2; . . . ; bm�
BTðxÞ ¼ ½B1ðxÞ;B2ðxÞ; . . . ;BnðxÞ�
PTðxÞ ¼ ½P1ðxÞ; P2ðxÞ; . . . ; PmðxÞ�

ð2Þ

By enforcing the interpolation to pass through all n nodes within
the influence domain Xx, the coefficients ai and bi in Eq. (1) can
be determined, and the RPIM interpolation can be expressed as

uðxÞ ¼ BTðxÞ PTðxÞ
� �

G�1 u
0

� �
¼ Uu ¼

Xn

i¼1

/iðxÞui ð3Þ

where /i(x) is the RPIM shape function, u is the vector of nodal val-
ues where

uT ¼ ½u1;u2; . . . ;un� ð4Þ

and G is

G ¼
Bn Pm

PT
m 0

� �
ð5Þ

in which

Bn ¼

B1ðx1Þ B2ðx1Þ � � � Bnðx1Þ
B1ðx2Þ B2ðx2Þ � � � Bnðx2Þ

..

. ..
. ..

. ..
.

B1ðxnÞ B2ðxnÞ � � � BnðxnÞ

266664
377775

n�n

ð6Þ

and

Pm ¼

P1ðx1Þ P2ðx1Þ � � � Pmðx1Þ
P1ðx2Þ P2ðx2Þ � � � Pmðx2Þ

..

. ..
. ..

. ..
.

P1ðxnÞ P2ðxnÞ � � � PmðxnÞ

266664
377775

n�m

ð7Þ

It has been proven in [24] that the RPIM shape functions /i(x) in Eq.
(3) possess the Kronecker delta property. Hence, essential boundary
conditions in the RPIM method can be directly applied as in the
FEM. Here, a linear polynomial basis function

PTðxÞ ¼ ½1; x; y� ð8Þ

and Gaussian type radial basis function

BiðxÞ ¼ exp �0:31
ri

rp

� 	2
" #

ð9Þ

are used in the present study. In Eq. (9), rp is the radius of the influ-
ence domain Xx of point x, and ri is a distance between interpolat-
ing point x and the node xi where

r2
i ¼ ðx� xiÞ2 þ ðy� yiÞ

2 ð10Þ

To capture the displacement discontinuity due to the existence
of crack as shown in Fig. 1, the visibility criterion [12] is used
where a point of interest and the nodes supporting that point sev-
ered by a crack is not associated in the interpolation. For the deter-
mination of the radius rp at point x, a radius di of the support
domain for an arbitrary node xi in domain X is firstly defined as

di ¼ a � ci ð11Þ

where ci is set as the distance to the fifth nearest neighbour node
near node xi, a is a coefficient and here a = 2.7 for the nodes near
the crack and at the boundary, and a = 2.0 for all other nodes. This
is due to the fact that when the visibility criterion is used to exclude
the nodes cut by the crack, or when an integration point or a
sampling point is close to the boundary, less nodes are included
as supporting nodes. This may lead to an ill conditioned problem

pr

x

Crack

xΩ

Fig. 1. The messshless model for an arbitrary analysis domain.
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