Contents lists available at ScienceDirect

Algal Research

journal homepage: www.elsevier.com/locate/algal

Effect of CO₂ in the aeration gas on cultivation of the microalga *Nannochloropsis oculata*: Experimental study and mathematical modeling of CO₂ assimilation

Carolina Shene ^{a,b,*}, Yusuf Chisti ^c, Mariela Bustamante ^a, Mónica Rubilar ^a

^a Department of Chemical Engineering and Center of Food Biotechnology and Bioseparations, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile

^b Centre for Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco, Chile

^c School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand

ARTICLE INFO

Article history: Received 25 June 2015 Received in revised form 7 October 2015 Accepted 14 November 2015 Available online xxxx

Keywords: Microalgae pH control Nannochloropsis oculata Carbon assimilation

ABSTRACT

The effects of CO₂-supplementation on growth and biomass productivity of the microalga *Nannochloropsis oculata* are discussed for cultures with and without pH control. In otherwise non-limiting photoautotrophic cultures, the supply of inorganic carbon controls the algal biomass concentration and productivity. Inorganic carbon is nearly always supplied as CO₂, but is taken up by the cells mainly as bicarbonate. The culture pH determines the speciation of the dissolved inorganic carbon and its availability for uptake. In air-sparged batch cultures, the pH control at 6.5, 7.0 and 8.0 by injection of CO₂ as needed, did not affect the biomass concentration and productivity relative to the control culture (no pH control) sparged with air. In the absence of pH control, the supplementation of air with CO₂ at 0.34 to 1.34% v/v levels had no effect on the biomass concentration, but the pH oscillated with the day–night cycle. Compared to the control culture, the range of pH oscillations was reduced if CO₂ was added to air at the specified levels. A mathematical model was developed to explain the effect of the culture pH and the CO₂ level in the aeration gas, on the rates of photosynthetic CO₂ assimilation and CO₂ absorption.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Microalgae are being extensively examined as potential sources of lipids for making biodiesel. In addition to oils, the microalgal biomass contains proteins, carbohydrates and other materials. Consequently, microalgae are potential sources of foods, feeds and feedstock for producing diverse chemicals and fuels. Microalgae transform sunlight into chemical energy (ATP and NADPH) that is used in the photosynthetic carbon reduction cycle, or Calvin-Benson cycle, to produce organic carbon. The first step of the Calvin-Benson cycle is catalyzed by the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). In both carboxylation and oxygenation reactions one of the substrates is ribulose-1,5-bisphosphate (RuP₂). The other substrate is either oxygen (in oxygenase reaction) or carbon dioxide (for carboxylation reaction). Because of the low level of carbon dioxide $(10-12 \mu M)$ in seawater in equilibrium with the atmosphere and the relatively low affinity of RuBisCO for carbon dioxide, algal biomass production in industrial processes requires a CO2-enriched medium to enhance the rate of photosynthesis and reduce photorespiration. Notwithstanding this, some

* Corresponding author at: Department of Chemical Engineering and Center of Food Biotechnology and Bioseparations, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile. marine phytoplanktonic species possess mechanisms that increase the concentration of CO₂ in the proximity of the active site of RuBisCO [22].

A CO₂-enrichment mechanism involves external carbonic anhydrases for dehydration of bicarbonate (HCO_3^-) to maintain a constant equilibrium concentration of CO₂ at the site of the CO₂ transporter [51]. In some species, bicarbonate, the main form of the dissolved inorganic carbon (DIC), is taken up via an active transport system [12,13,15, 33,46]. Inside the cells, HCO_3^- is dehydrated by internal carbonic anhydrases located near the active site of RuBisCO to generate CO₂, the required substrate.

The inorganic carbon required by a culture system is typically supplied by bubbling, or sparging, CO_2 -enriched air through the culture medium. The effect of a CO_2 -enriched air supply on the biomass production parameters of a microalgal culture depends not only on the algal strain, but also on the culture conditions (e.g. temperature, salinity, ionic strength of the medium, concentrations of the other nutrients, and the pH) being used. The culture conditions define the main form of the dissolved inorganic carbon available, its concentration, and the expression of any carbon concentrating mechanisms [22]. CO_2 -enriched air is commonly used to reduce the culture pH that would otherwise increase as a consequence of the uptake nutrients such as HCO_3^- and NO_3^- [49]. In addition to the effect of pH on carbon speciation, pH can also affect the growth rate of microalgae by influencing the rates of biochemical reactions and the properties of the cell membrane [47].

CrossMark

E-mail address: carolina.shene@ufrontera.cl (C. Shene).

Nomenclature

a _B	total bubble surface area
abs	absorptance
A _C	lolal cell sulface alea
ΔΤΟ	adenosine triphosphate
R	concentration of HCO^{-} in the medium
De B.	concentration of HCO_{-}^{-} in the cell
C1	parameter defined by Eq. (58)
C2	parameter defined by Eq. (59)
Ca	carotenoid content of the biomass
$C_{\rm absorption}$	fraction of the supplied CO ₂ absorbed in the bioreactor
$C_{\rm Chl}$	chlorophyll content (mass per unit biomass) in the cell
$C_{\rm Chl,HI}$	chlorophyll content in the cell under high light
$C_{\text{Chl,Ll}}$	chlorophyll content in the cell under low light
C _e	concentration of CO ₂ in the medium
C _H	concentration of protons in the medium
C _{Hi}	concentration of protons in the cell
Chia	chlorophyll <i>a</i> content of the biomass
C _i	concentration of CO_2 in the cell
С _{ОН}	dilution rate
	dissolved inorganic carbon
e ⁻	electron
f	parameter correcting for spectral quality of the light
F	molar flow rate of the aeration gas
$F_{\rm C}^{\rm in}$	inlet molar flow rate of CO ₂
$F_{\rm N}^{\rm in}$	inlet molar flow rate of N ₂
$F_{\rm O}^{\rm in}$	inlet molar flow rate of O ₂
$F_{\rm C}^{\rm out}$	outlet molar flow rate of CO ₂
Four	outlet molar flow rate of O_2
Fĉ	molar flow rate of CO_2 in the gas bubbles reaching the
CX.	neadspace molar flow rate of Ω in the rac hubbles reaching the
r ₀	headspace
Hc	Henry's law constant for CO ₂
HI	high irradiance
H_{O}	Henry's law constant for O_2
Ι	incident irradiance
I_2	fraction of the incident irradiance (I) absorbed by pho-
	tosystem II
j	potential electron transport rate per unit mass of
T	chlorophyll
J	potential electron transport rate
Jmax	tions at given partial pressures of CO and O
k.	forward rate constant of CO_2 hydration
k_1	reverse rate constant of CO_2 hydration
k_3	forward rate constant of CO_2 hydration in acidic
5	conditions
<i>k</i> ₋₃	reverse rate constant of CO ₂ hydration in acidic
	conditions
k_3^*	k_3 value estimated at the intracellular pH
k_4	forward rate constant of CO ₂ hydration in alkaline
1.	conditions
K_{-4}	reverse rate constant of CO_2 hydration in alkaline
ν^*	$\frac{1}{2} \frac{1}{2} \frac{1}$
K4 ken	κ_{-3} value estimated at the initial definition μ_{-3} value estimated at the mass transfer coefficient between gas hubbles and the
V LB	liquid
$k_{\rm IH}$	mass transfer coefficient between gas in the headspace
-111	and the medium
<i>K</i> ₂	dissociation constant of carbonic acid to bicarbonate

K ₃	equilibrium constant of CO ₂ hydration in acidic
	conditions
K ₁	equilibrium constant of CO ₂ hydration in alkaline
-	conditions
К_	dissociation constant of the bicarbonate to carbonate
к ₅ И	ion product of water
K ₆	Michaelia constant of the introcellular contantia
Kb	Michaelis constant of the intracellular cardonic
	anhydrase for HCO ₃
K _c	Michaelis constant of the intracellular carbonic
	anhydrase for CO ₂
K _C	Michaelis constant of RuBisCO for CO ₂
Ko	inhibition constant of RuBisCO for O ₂
K _r	Michaelis constant of HCO ₃ ⁻ transport out of the cell
Kt	Michaelis constant of HCO ₃ ⁻ transport into the cell
L	lipid content of the biomass
LI	low irradiance
Ν	cell concentration
NADPH	nicotinamide adenine dinucleotide phosphate (reduced
I U IDI II	form)
0	concentration of $\Omega_{\rm c}$ in the medium
O _e	concentration of O_2 in the cell
nout	$Concentration of O_2$ in the cutlet gas
PC	partial pressure of O_2 in the outlet gas
Po	partial pressure of O_2 in the outlet gas
pĉ	partial pressure of CO_2 in the bubbles reaching the
v	neadspace
p_0	partial pressure of O_2 in the buddles reaching the
_	headspace
P_{C}	cell permeability to CO ₂
P_{O}	cell permeability to O ₂
$P_{\rm T}$	total pressure
Q	volumetric flow rate of gas
_	
Q_{f}	volume flow rate of feed
Q _f QY	volume flow rate of feed quantum yield
$Q_{\rm f}$ QY r_1	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic
$Q_{\rm f}$ QY r_1	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase
$Q_{\rm f}$ QY r_1 r_2	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase
$ \begin{array}{c} Q_{\rm f} \\ QY \\ r_1 \\ r_2 \\ r_3 \end{array} $	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell
Q_{f} QY r_{1} r_{2} r_{3} r_{4}	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell
$Q_{\rm f}$ QY r_1 r_2 r_3 r_4 r_6	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell
Q _f QY r ₁ r ₂ r ₃ r ₄ r ₆ r ₇	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium
$Q_{\rm f}$ QY r_1 r_2 r_3 r_4 r_6 r_7 r_8	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation
$Q_{\rm f}$ QY r_1 r_2 r_3 r_4 r_6 r_7 r_8 r_9	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability
$Q_{\rm f}$ QY r_1 r_2 r_3 r_4 r_6 r_7 r_8 r_9 r_{10}	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability
Q _f QY r ₁ r ₂ r ₃ r ₄ r ₆ r ₇ r ₈ r ₉ r ₁₀ r ₁₁	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of oxygenation by RuBisCO
$\begin{array}{c} Q_{\rm f} \\ QY \\ r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_6 \\ r_7 \\ r_8 \\ r_9 \\ r_{10} \\ r_{11} \\ r_{12} \end{array}$	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of oxygenation by RuBisCO rate of CO_2 production by dark respiration
$\begin{array}{c} Q_{\rm f} \\ QY \\ r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_6 \\ r_7 \\ r_8 \\ r_9 \\ r_{10} \\ r_{11} \\ r_{12} \\ r_a \end{array}$	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of oxygenation by RuBisCO rate of CO_2 production by dark respiration rate of CO_2 assimilation per mole of Chl in the biomass
$\begin{array}{c} Q_{\rm f} \\ QY \\ r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_6 \\ r_7 \\ r_8 \\ r_9 \\ r_{10} \\ r_{11} \\ r_{12} \\ r_a \\ r_B \end{array}$	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of oxygenation by RuBisCO rate of CO_2 production by dark respiration rate of CO_2 assimilation per mole of Chl in the biomass mean bubble radius
$\begin{array}{c} Q_{\rm f} \\ QY \\ r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_6 \\ r_7 \\ r_8 \\ r_9 \\ r_{10} \\ r_{11} \\ r_{12} \\ r_a \\ r_B \\ r_C \end{array}$	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of CO_2 hydration in the cell rate of CO_2 hydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of O_2 diffusion by RuBisCO rate of CO_2 production by dark respiration rate of CO_2 assimilation per mole of Chl in the biomass mean bubble radius mean cell radius
$Q_{\rm f}$ QY r_1 r_2 r_3 r_4 r_6 r_7 r_8 r_9 r_{10} r_{11} r_{12} r_a r_B r_C r_d r_d	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of HCO_3^- dehydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of O_2 diffusion by RuBisCO rate of CO_2 production by dark respiration rate of CO_2 assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area
Q _f QY r ₁ r ₂ r ₃ r ₄ r ₆ r ₇ r ₈ r ₉ r ₁₀ r ₁₁ r ₁₂ r _a r _B r _C r _{dark} R	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of HCO_3^- dehydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of O_2 diffusion by RuBisCO rate of CO_2 production by dark respiration rate of CO_2 assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant
Q _f QY r ₁ r ₂ r ₃ r ₄ r ₆ r ₇ r ₈ r ₉ r ₁₀ r ₁₁ r ₁₂ r _a r _B r _C r _{dark} R B	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of HCO_3^- dehydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of O_2 diffusion by RuBisCO rate of CO_2 production by dark respiration rate of CO_2 assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO_3^- production in the liquid phase
Q _f QY r ₁ r ₂ r ₃ r ₄ r ₆ r ₇ r ₈ r ₉ r ₁₀ r ₁₁ r ₁₂ r _a r _B r _C r _{dark} R R _B R _C	volume flow rate of feed quantum yield rate of HCO_3^- dehydration by intracellular carbonic anhydrase rate of CO_2 hydration by carbonic anhydrase rate of HCO_3^- dehydration in the cell rate of HCO_3^- dehydration in the cell rate of HCO_3^- transport from the medium to the cell rate of HCO_3^- transport from the cell to the medium rate of carboxylation rate of CO_2 diffusion due to membrane permeability rate of O_2 diffusion due to membrane permeability rate of O_2 diffusion by RuBisCO rate of CO_2 production by dark respiration rate of CO_2 assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO_3^- production in the liquid phase rate of CO_2 production in the liquid phase
Q _f QY r ₁ r ₂ r ₃ r ₄ r ₆ r ₇ r ₈ r ₉ r ₁₀ r ₁₁ r ₁₂ r _a r _B r _C r _{dark} R R _B R _C R _{dark}	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of HCO ₃ ⁻ dehydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the cell to the medium rate of carboxylation rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of O ₂ diffusion by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase dark respiration rate
Qr QY r1 r2 r3 r4 r6 r7 r8 r9 r10 r11 r12 ra rB rC rdark R RB RC Rdark HI	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of HCO ₃ ⁻ dehydration in the cell rate of HCO ₃ ⁻ dehydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the cell to the medium rate of CO ₂ diffusion due to membrane permeability rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of CO ₂ production by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase dark respiration rate dark respiration rate under high light
Qr QY r1 r2 r3 r4 r6 r7 r8 r9 r10 r11 r12 ra rB rC rdark R RB RC Rdark HI Rdark HI Rdark HI	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of HCO ₃ ⁻ dehydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the cell to the medium rate of carboxylation rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of O ₂ diffusion by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase dark respiration rate under high light dark respiration rate under high light
Q _f QY r ₁ r ₂ r ₃ r ₄ r ₆ r ₇ r ₈ r ₉ r ₁₀ r ₁₁ r ₁₂ r _a r _b r _c r _{dark} R R _b R _c R _{dark} , HI R _{dark} , LI RuBiSCO	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of CO ₂ hydration in the cell rate of HCO ₃ ⁻ dehydration in the cell rate of HCO ₃ transport from the medium to the cell rate of HCO ₃ transport from the cell to the medium rate of CO ₂ diffusion due to membrane permeability rate of CO ₂ diffusion due to membrane permeability rate of CO ₂ production by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase dark respiration rate under high light dark respiration rate under low light ribulose bisphosphate carboxylase-oxygenase
Qr QY r1 r2 r3 r4 r6 r7 r8 r9 r10 r11 r12 ra rB rC rdark R RC Rdark, HI Rdark, LI RdBSCO RUP2	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of HCO ₃ dehydration in the cell rate of CO ₂ hydration in the cell rate of HCO ₃ transport from the medium to the cell rate of HCO ₃ transport from the cell to the medium rate of carboxylation rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of CO ₂ production by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase dark respiration rate under high light dark respiration rate under low light ribulose bisphosphate carboxylase-oxygenase ribulose-1.5-bisphosphate
Qr QY r1 r2 r3 r4 r6 r7 r8 r9 r10 r11 r12 ra rB rC rdark R Rdark RB RC Rdark, HI RuBisCO RuP2 SH	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of HCO ₃ ⁻ dehydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the cell to the medium rate of carboxylation rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of O ₂ production by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase rate of CO ₂ production rate under high light dark respiration rate under low light ribulose bisphosphate carboxylase-oxygenase ribulose-1,5-bisphosphate area of the interface between the liquid and the head-
Qr QY r1 r2 r3 r4 r6 r7 r8 r9 r10 r11 r12 ra rB rC rdark R Rdark R Rdark, HI RuBisCO RuP2 SH	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of HCO ₃ ⁻ dehydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the cell to the medium rate of carboxylation rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of oxygenation by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase rate of CO ₂ production rate under high light dark respiration rate under low light ribulose bisphosphate carboxylase-oxygenase ribulose-1,5-bisphosphate area of the interface between the liquid and the head- space in the bioreactor
Qr QY r1 r2 r3 r4 r6 r7 r8 r9 r10 r11 r12 ra rB rC rdark R Rdark R Rdark, HI Rdark, LI RuBiSCO RuP2 SH S	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of HCO ₃ ⁻ dehydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of CO ₂ diffusion due to membrane permeability rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of CO ₂ production by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase rate of CO ₂ production rate under high light dark respiration rate under low light ribulose bisphosphate carboxylase-oxygenase ribulose-1,5-bisphosphate area of the interface between the liquid and the head- space in the bioreactor salinity
Qr QY 71 72 73 74 76 77 78 79 710 711 712 7a 7B 7C 7dark R R C Rdark R R C Rdark, HI Rdark, LI RuBiSCO RuP ₂ S _H	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of CO ₂ hydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ transport from the medium to the cell rate of CO ₂ diffusion due to membrane permeability rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of CO ₂ production by dark respiration rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase rate of CO ₂ production rate under high light dark respiration rate under low light ribulose bisphosphate carboxylase-oxygenase ribulose-1,5-bisphosphate area of the interface between the liquid and the head- space in the bioreactor salinity specificity of RuBisCO
Qr QY 71 72 73 74 76 77 78 79 710 711 712 7a 7B 7C 7dark R Rark R Rdark, HI RuBiSCO RuP ₂ S _H S S _{CO} t	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of CO ₂ hydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of CO ₂ diffusion due to membrane permeability rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of CO ₂ production by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production in the liquid phase rate of CO ₂ production rate under high light dark respiration rate under low light ribulose-1,5-bisphosphate area of the interface between the liquid and the head- space in the bioreactor salinity specificity of RuBisCO time
Qr QY 71 72 73 74 76 77 78 79 710 711 712 78 79 710 711 712 78 70 711 712 78 76 70 711 712 78 70 710 711 712 78 78 79 710 711 71 78 79 710 711 71 78 79 710 711 71 78 79 710 711 71 78 79 710 711 71 78 79 710 711 712 78 79 710 711 712 78 79 710 711 712 78 79 710 711 712 78 79 710 711 712 78 79 710 711 712 78 78 79 710 711 712 78 78 79 70 710 711 712 78 78 78 79 70 710 711 712 78 78 79 70 70 711 712 78 78 79 70 70 710 711 712 78 78 79 70 70 711 712 78 78 79 70 70 711 712 78 78 79 70 70 711 712 78 78 78 79 70 70 711 712 78 78 70 70 711 712 78 70 711 712 78 70 70 711 712 78 70 70 711 712 78 78 70 70 711 712 78 70 70 711 72 78 70 70 711 72 78 70 70 711 712 78 70 70 711 70 70 70 70 70 711 70 70 70 70 70 70 70 70 70 70 70 70 70	volume flow rate of feed quantum yield rate of HCO ₃ ⁻ dehydration by intracellular carbonic anhydrase rate of CO ₂ hydration by carbonic anhydrase rate of HCO ₃ ⁻ dehydration in the cell rate of CO ₂ hydration in the cell rate of HCO ₃ ⁻ transport from the medium to the cell rate of HCO ₃ ⁻ transport from the cell to the medium rate of CO ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of O ₂ diffusion due to membrane permeability rate of CO ₂ production by RuBisCO rate of CO ₂ production by dark respiration rate of CO ₂ assimilation per mole of Chl in the biomass mean bubble radius mean cell radius dark respiration rate per unit leaf surface area gas constant rate of HCO ₃ ⁻ production in the liquid phase rate of CO ₂ production rate under high light dark respiration rate under low light ribulose bisphosphate carboxylase-oxygenase ribulose-1,5-bisphosphate area of the interface between the liquid and the head- space in the bioreactor salinity specificity of RuBisCO time absolute temperature

Download English Version:

https://daneshyari.com/en/article/8087445

Download Persian Version:

https://daneshyari.com/article/8087445

Daneshyari.com